RUS  ENG
Full version
PEOPLE

Pis'mennyi Vyacheslav Dmitrievich

Publications in Math-Net.Ru

  1. Spectral and temporal characteristics of a pulsed atmospheric-pressure electron-beam-controlled CO2 laser with a cryogenically cooled active mixture

    Kvantovaya Elektronika, 17:8 (1990),  982–985
  2. Control of the spectral composition of 40-μs radiation pulses from an atmospheric pressure CO2 laser

    Kvantovaya Elektronika, 17:1 (1990),  60–62
  3. Interaction of longitudinal and transverse structures in a non-self-sustained discharge in mixtures $\mathrm{H}_2(\mathrm{D}_2)+\mathrm{Ar}$

    Dokl. Akad. Nauk SSSR, 306:5 (1989),  1099–1103
  4. Conditions for stable coherent operation of two CO2 lasers with unstable resonators

    Kvantovaya Elektronika, 16:12 (1989),  2462–2468
  5. Phase locking of waveguide CO2 lasers as a result of a four-wave interaction of light beams in an absorbing liquid

    Kvantovaya Elektronika, 15:5 (1988),  877–878
  6. Experimental investigation of the ambipolar drift of plasma disturbed by a fast electron beam

    Dokl. Akad. Nauk SSSR, 297:4 (1987),  833–836
  7. Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse

    Kvantovaya Elektronika, 14:11 (1987),  2252–2254
  8. Thermohydrodynamic models of the interaction of pulse-periodic radiation with matter

    Kvantovaya Elektronika, 14:2 (1987),  271–278
  9. Thermodiffusion separation of gas mixtures in a sound wave field

    Dokl. Akad. Nauk SSSR, 288:3 (1986),  605–608
  10. Isotopically selective dissociation of COCl2 molecules in the radiation field of a pulsed CO laser

    Kvantovaya Elektronika, 13:1 (1986),  206–207
  11. Limiting characteristics of non-self-sustained discharge in $\mathrm{CO}$-laser mixtures

    TVT, 24:5 (1986),  852–856
  12. Phase synchronization of the two-dimensional set of wave guide $CO_{2}$-lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:4 (1985),  249–252
  13. Excitation of metastable states of oxygen molecules in a gas discharge

    Dokl. Akad. Nauk SSSR, 273:3 (1983),  600–604
  14. Experiments on plasma heating by CO2 laser radiation in the TIR-1 facility

    Kvantovaya Elektronika, 10:8 (1983),  1533–1538
  15. Effect of λ =308 nm laser radiation on pyrolysis of 1,2-dichloroethane

    Kvantovaya Elektronika, 10:7 (1983),  1406–1412
  16. Energy characteristics of an electron-beam-controlled atmospheric-pressure CO2 laser utilizing CO2–N2–H2O mixtures

    Kvantovaya Elektronika, 10:7 (1983),  1395–1399
  17. On the separation of gas mixtures in the sound wave field

    Dokl. Akad. Nauk SSSR, 262:2 (1982),  331–335
  18. Influence of rotational relaxation in a CO2 amplifier on the shape of a short amplified pulse

    Kvantovaya Elektronika, 9:9 (1982),  1862–1864
  19. Technological cw CO2 laser with a nonself-sustained discharge

    Kvantovaya Elektronika, 9:7 (1982),  1309–1313
  20. Isotope separation by multiphoton dissociation of molecules using high-power CO2 laser radiation. Scaling of the process for carbon isotopes

    Kvantovaya Elektronika, 9:4 (1982),  743–759
  21. Gas injection through a porous cathode and stabilization of a non-self-maintaining discharge

    TVT, 20:5 (1982),  828–831
  22. Investigation of the characteristics of a pulsed $CF_4$-laser

    Kvantovaya Elektronika, 7:1 (1980),  87–90
  23. Stabilization of the frequency of a pulse-periodic TEA CO2 laser by injection of a signal from a low-pressure cw laser

    Kvantovaya Elektronika, 6:11 (1979),  2463–2466
  24. Isotope separation by multiphoton dissociation of molecules with high-power CO2 laser radiation. IV. Enrichment with 33S by irradiation of cooled SF6 gas

    Kvantovaya Elektronika, 6:5 (1979),  1062–1069
  25. Isotope separation by multiphoton dissociation of molecules with high-power CO2 laser radiation. III. Investigation of the process for sulfur isotopes and SF6 molecules

    Kvantovaya Elektronika, 6:4 (1979),  823–832
  26. Isotope separation by multiphoton dissociation of molecules with high-power CO2 laser radiation. II. Pulse-periodic CO2 lasers

    Kvantovaya Elektronika, 6:4 (1979),  811–822
  27. High-pressure CO2 laser with a nonself-sustaining discharge ionized by repetitively pulsed UV radiation

    Kvantovaya Elektronika, 6:2 (1979),  370–372
  28. The non-self-sustaining gas discharge for exciting continuouswave gas lasers

    UFN, 122:3 (1977),  419–447
  29. Ionization instability of the non-self-sustained discharge due to the step ionization

    Dokl. Akad. Nauk SSSR, 228:1 (1976),  77–80
  30. Gasdynamic processes in high-pressure, fast-flow $\mathrm{CO}_2$ laser operating under conditions of repeating pulses

    Dokl. Akad. Nauk SSSR, 225:6 (1975),  1300–1303
  31. Gas–discharge contraction

    TVT, 13:3 (1975),  654–656
  32. Исследование динамики стримера, управляемого внешним электродом, при пробое в ксеноне

    TVT, 12:2 (1974),  252–258
  33. Experimental observation of $T$-layer in moving plasma interacting with a magnetic field

    Dokl. Akad. Nauk SSSR, 212:5 (1973),  1092–1095
  34. A contribution to the theory of streamer breakdown

    Prikl. Mekh. Tekh. Fiz., 14:1 (1973),  56–65
  35. On the problem of gaseous laser combined pimping

    Dokl. Akad. Nauk SSSR, 205:6 (1972),  1328–1331
  36. On contraction of positive column with electronegative impurities

    Dokl. Akad. Nauk SSSR, 200:1 (1971),  68–71
  37. On electrical conductivity of optically transparent xenon plasma

    Dokl. Akad. Nauk SSSR, 196:4 (1971),  812–813
  38. Instability of powerful gas discharge

    Dokl. Akad. Nauk SSSR, 196:3 (1971),  562–564
  39. Температура плазмы в начальной стадии импульсного ксенонового разряда

    TVT, 9:5 (1971),  865–868
  40. On the electron temperature in a powerful impulsive discharge

    Dokl. Akad. Nauk SSSR, 155:2 (1964),  312–315

  41. In memory of Aleksandr Alekseevich Vedenov

    UFN, 178:4 (2008),  445–446
  42. In memory of Vladimir Aleksandrovich Molchanov

    UFN, 170:4 (2000),  469–470
  43. Feliks Romanovich Ulinich (Obituary)

    UFN, 161:3 (1991),  177–179
  44. Viktor Konstantinovich Orlov

    Kvantovaya Elektronika, 15:5 (1988),  1087–1088


© Steklov Math. Inst. of RAS, 2026