RUS  ENG
Full version
PEOPLE

Soltan Petru S

Publications in Math-Net.Ru

  1. Abstract complexes, their homologies and applications

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 2,  31–58
  2. The Euler Tour of $n$-Dimensional Manifold with Positive Genus

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2,  110–113
  3. On the Division of Abstract Manifolds in Cubes

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 2,  29–34
  4. Solution of the Hadwiger problem for a class of convex bodies

    Dokl. Akad. Nauk SSSR, 313:3 (1990),  528–532
  5. Illumination through convex bodies

    Dokl. Akad. Nauk SSSR, 286:1 (1986),  50–53
  6. On the decomposition of a plane domain into $d$-convex parts and its application

    Dokl. Akad. Nauk SSSR, 262:2 (1982),  271–273
  7. $d$-convex functions

    Dokl. Akad. Nauk SSSR, 249:3 (1979),  555–558
  8. Combinatorial geometry and convexity classes

    Uspekhi Mat. Nauk, 33:1(199) (1978),  3–42
  9. Analogs of regular simplexes in normed spaces

    Dokl. Akad. Nauk SSSR, 222:6 (1975),  1303–1305
  10. Certain properties of $\mathrm{d}$-convex sets

    Dokl. Akad. Nauk SSSR, 212:6 (1973),  1276–1279
  11. Helly’s theorem for $\mathrm{d}$-convex sets

    Dokl. Akad. Nauk SSSR, 205:3 (1972),  537–539
  12. On the covering of polyhedra by homothetic polyhedra

    Dokl. Akad. Nauk SSSR, 202:3 (1972),  541–544
  13. Simultaneous solution of several Steiner problems on a graph

    Dokl. Akad. Nauk SSSR, 202:2 (1972),  294–297
  14. Covering convex solids by greater homotheties

    Mat. Zametki, 12:1 (1972),  85–90
  15. Illumination from within of the boundary of a convex body

    Mat. Sb. (N.S.), 87(129):1 (1972),  83–90
  16. The Steiner problem on graphs

    Dokl. Akad. Nauk SSSR, 198:1 (1971),  46–49
  17. Illumination from within for unbounded convex bodies

    Dokl. Akad. Nauk SSSR, 194:2 (1970),  273–274
  18. Generalization of a theorem of Hurewicz on the dimension of preimages

    Mat. Sb. (N.S.), 69(111):2 (1966),  257–285
  19. On the illumination of the boundary of a convex body from within

    Mat. Sb. (N.S.), 57(99):4 (1962),  443–448
  20. Dimension of inverse images in the mapping of compacta into polyhedra

    Dokl. Akad. Nauk SSSR, 130:3 (1960),  510–513

  21. Academician Vladimir Arnautov – 70th anniversary

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 3,  118–124
  22. Academician Radu Miron – Eighty Years of Life and Sixty Years of Efforts

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2,  130–136


© Steklov Math. Inst. of RAS, 2026