RUS  ENG
Full version
PEOPLE

Molotkov Sergei Nikolaevich

Publications in Math-Net.Ru

  1. On the extraction of random bit sequences in quantum random number generators with several independent Markov sources

    Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025),  11–22
  2. Bose–Einstein statistics, random block ciphers, and the one-time notepad in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 121:11 (2025),  914–921
  3. On the key search complexity in quantum cryptography with strong information-theoretic authentication

    Pis'ma v Zh. Èksper. Teoret. Fiz., 121:6 (2025),  503–512
  4. Vernam's, Kotelnikov's, and Shannon's one-time pad and quantum cryptography

    UFN, 195:10 (2025),  1021–1046
  5. On the equivalence of phase and polarization transformations in quantum optics

    Pis'ma v Zh. Èksper. Teoret. Fiz., 120:7 (2024),  505–510
  6. Hong–Ou–Mandel interference in quantum optics, monogamy of entanglement, nonorthogonality, and untrusted nodes

    Pis'ma v Zh. Èksper. Teoret. Fiz., 120:1 (2024),  17–25
  7. Implementation of a quantum generator of random numbers: extraction of provably random bit sequences from correlated Markov chains

    Pis'ma v Zh. Èksper. Teoret. Fiz., 119:7 (2024),  533–544
  8. On the robustness of reference-frame-independent quantum key distribution systems against active probing attacks

    Pis'ma v Zh. Èksper. Teoret. Fiz., 119:5 (2024),  390–401
  9. Quantum random number generators, extraction of provably random bit sequences from Markov chain trajectories

    UFN, 194:9 (2024),  974–993
  10. Measurement-device-independent quantum key distribution

    Pis'ma v Zh. Èksper. Teoret. Fiz., 118:1 (2023),  62–70
  11. Transfer of secret keys in a quantum network with trusted intermediate nodes and with block cipher encryption

    Pis'ma v Zh. Èksper. Teoret. Fiz., 117:6 (2023),  470–479
  12. Quantum algorithm for the invariant estimate of the closeness of classical ciphers to the one-time pad

    Pis'ma v Zh. Èksper. Teoret. Fiz., 117:1 (2023),  80–88
  13. Distribution of secret keys in a quantum network with trusted intermediate nodes

    Mat. Vopr. Kriptogr., 14:3 (2023),  9–33
  14. Quantum key distribution with untrusted detectors accessible to an eavesdropper

    Pis'ma v Zh. Èksper. Teoret. Fiz., 116:2 (2022),  128–132
  15. Extraction of quantum randomness

    UFN, 191:6 (2021),  651–669
  16. On a new attack on quantum key distribution: joint unambiguous measurements of probe states and the PNS attack on information states

    Pis'ma v Zh. Èksper. Teoret. Fiz., 112:6 (2020),  401–411
  17. On eavesdropping in quantum cryptography through side channels of information leakage

    Pis'ma v Zh. Èksper. Teoret. Fiz., 111:11 (2020),  778–786
  18. On the side quantum–classical binary channel of information leakage with Gaussian noise

    Pis'ma v Zh. Èksper. Teoret. Fiz., 111:9 (2020),  608–614
  19. Implementation of a quantum random number generator based on the optimal clustering of photocounts

    Pis'ma v Zh. Èksper. Teoret. Fiz., 106:7 (2017),  451–458
  20. Control of distributed interference in the one-way quantum cryptography system

    Pis'ma v Zh. Èksper. Teoret. Fiz., 106:2 (2017),  108–114
  21. Quantum entanglement and composite keys in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 105:12 (2017),  763–767
  22. Practical quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 105:9 (2017),  570–576
  23. On the limiting characteristics of quantum random number generators at various clusterings of photocounts

    Pis'ma v Zh. Èksper. Teoret. Fiz., 105:6 (2017),  374–380
  24. On the correction of errors in quantum cryptography systems

    Pis'ma v Zh. Èksper. Teoret. Fiz., 104:5 (2016),  349–355
  25. On protection against a bright-pulse attack in the two-pass quantum cryptography system

    Pis'ma v Zh. Èksper. Teoret. Fiz., 103:12 (2016),  883–890
  26. Active stabilization of the optical part in fiber optic quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 103:6 (2016),  469–474
  27. On the complexity of search for keys in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 103:5 (2016),  389–393
  28. What is a quantum cryptography protocol that ensures the maximum distance in the case of a strictly single-photon source?

    Pis'ma v Zh. Èksper. Teoret. Fiz., 102:7 (2015),  530–535
  29. Analog of differential-phase quantum cryptography on coherent states with provable cryptographic security

    Pis'ma v Zh. Èksper. Teoret. Fiz., 102:6 (2015),  436–443
  30. On the security of fiber optic quantum cryptography systems without the control of the intensity of quasi-single-photon coherent states

    Pis'ma v Zh. Èksper. Teoret. Fiz., 101:8 (2015),  637–643
  31. On a beam splitter attack and soft filtering of coherent states in differential phase shift quantum cryptography

    Zh. Èksper. Teoret. Fiz., 145:1 (2014),  5–16
  32. Wavefunctions of a prolate spheroid and multiplexing in relativistic quantum cryptography on orthogonal states

    Pis'ma v Zh. Èksper. Teoret. Fiz., 100:9 (2014),  674–682
  33. On the stability of fiber-optic quantum cryptography at arbitrary losses in a communication channel: Exclusion of unambiguous measurements

    Pis'ma v Zh. Èksper. Teoret. Fiz., 100:6 (2014),  457–464
  34. Duality of quantum communication channels and a collective intercept-resend attack on quantum key distribution with differential phase shift

    Pis'ma v Zh. Èksper. Teoret. Fiz., 100:4 (2014),  305–311
  35. On the on-line stabilization of visibility of interference in fiber optic quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:12 (2014),  837–842
  36. On the resistance of quantum cryptography with mixed bases on composite photons, polarization qutrits

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:12 (2014),  832–836
  37. On the compression of information of a classical source with the use of side quantum and classical information

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:7 (2014),  488–492
  38. Method of the balancing of Mach-Zehnder fiber-optic interferometers in single-pass quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 98:10 (2013),  700–706
  39. On a symmetry topological classification of edge states in crystalline spin-Hall insulators with the time reversal invariance

    Pis'ma v Zh. Èksper. Teoret. Fiz., 98:7 (2013),  466–471
  40. On a new type of massless Dirac fermions in crystalline topological insulators

    Pis'ma v Zh. Èksper. Teoret. Fiz., 98:5 (2013),  336–341
  41. On the quantum-mechanical bound on the loss of information through side channels in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 97:10 (2013),  693–699
  42. On ballistic transport in topological insulators with the structure of borders

    Pis'ma v Zh. Èksper. Teoret. Fiz., 97:6 (2013),  384–391
  43. On the resistance of relativistic quantum cryptography in open space at finite resources

    Pis'ma v Zh. Èksper. Teoret. Fiz., 96:5 (2012),  374–380
  44. Quantum key distribution on composite photons, polarization qutrits

    Pis'ma v Zh. Èksper. Teoret. Fiz., 96:5 (2012),  367–373
  45. On geometrically uniform states in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 95:6 (2012),  361–366
  46. Entropic uncertainty relations and the extremely allowable critical error in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 94:11 (2011),  900–903
  47. Relativistic quantum cryptography for open space without clock synchronization on the receiver and transmitter sides

    Pis'ma v Zh. Èksper. Teoret. Fiz., 94:6 (2011),  504–512
  48. On the electronic spectrum of low-dimensional structures with the symmetry of borders

    Pis'ma v Zh. Èksper. Teoret. Fiz., 94:4 (2011),  306–311
  49. On a solution to the problem of ensuring the security of quantum cryptography for an infinite communication channel

    Pis'ma v Zh. Èksper. Teoret. Fiz., 93:12 (2011),  830–836
  50. Quantum key distribution without the transfer of a quantum state as a whole through a communication channel

    Pis'ma v Zh. Èksper. Teoret. Fiz., 93:6 (2011),  389–393
  51. On the vulnerability of the swiss system of coherent quantum cryptography to an attack with repeated measurements

    Pis'ma v Zh. Èksper. Teoret. Fiz., 93:3 (2011),  194–201
  52. Enhancement of the robustness of phase-time quantum cryptography by block error correction

    Pis'ma v Zh. Èksper. Teoret. Fiz., 92:7 (2010),  539–544
  53. On teleportation in a system of identical particles

    Pis'ma v Zh. Èksper. Teoret. Fiz., 92:3 (2010),  212–215
  54. On the supraluminal group velocity and the transmission of information

    Pis'ma v Zh. Èksper. Teoret. Fiz., 91:12 (2010),  762–768
  55. Quantum key distribution with the deterministic preparation and detection of quantum states

    Pis'ma v Zh. Èksper. Teoret. Fiz., 91:1 (2010),  51–57
  56. On one asymptotic property of time-shift quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 90:7 (2009),  597–603
  57. On the specificity of the electron spectrum of two-dimensional lattices

    Pis'ma v Zh. Èksper. Teoret. Fiz., 90:5 (2009),  382–388
  58. Quantum key distribution in a single-photon regime with nonorthogonal basis states

    Pis'ma v Zh. Èksper. Teoret. Fiz., 89:7 (2009),  432–438
  59. Is there a fundamental limit on the key distribution distance in quantum cryptography?

    Pis'ma v Zh. Èksper. Teoret. Fiz., 88:10 (2008),  791–796
  60. On the resistance of the quantum key distribution with phase-time encoding for long communication channels

    Pis'ma v Zh. Èksper. Teoret. Fiz., 88:4 (2008),  315–320
  61. On the ultimate capabilities of the quantum key distribution with the control over the statistics of a non-single-photon source

    Pis'ma v Zh. Èksper. Teoret. Fiz., 87:10 (2008),  674–679
  62. On the simultaneous measurement of the energy and arrival time of a photon

    Pis'ma v Zh. Èksper. Teoret. Fiz., 86:12 (2007),  901–906
  63. Explicit attack on the key in quantum cryptography (BB84 protocol) reaching the theoretical error limit $Q_c\approx11\%$

    Pis'ma v Zh. Èksper. Teoret. Fiz., 85:10 (2007),  632–637
  64. What fundamentally new properties are introduced by special relativity to quantum cryptography in open space?

    Pis'ma v Zh. Èksper. Teoret. Fiz., 85:9 (2007),  569–575
  65. Combined phase-time encoding method in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 85:6 (2007),  354–359
  66. Quantum cryptography and V A Kotel'nikov's one-time key and sampling theorems

    UFN, 176:7 (2006),  777–788
  67. On the privacy-preserving cascade method for correcting errors in primary keys in quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 82:12 (2005),  868–873
  68. On the maximum admissible error and key compression degree in quantum cryptography on two nonorthogonal states

    Pis'ma v Zh. Èksper. Teoret. Fiz., 81:11 (2005),  733–738
  69. On a collective attack on the key in quantum cryptography on two nonorthogonal states

    Pis'ma v Zh. Èksper. Teoret. Fiz., 80:8 (2004),  639–644
  70. On the justification of quantum cryptography based on time shifts

    Pis'ma v Zh. Èksper. Teoret. Fiz., 80:7 (2004),  576–582
  71. Integration of quantum cryptography into fiber-optic telecommunication systems

    Pis'ma v Zh. Èksper. Teoret. Fiz., 79:11 (2004),  691–704
  72. Simple estimate of the critical length of a quantum communication channel with attenuation for coherent-state quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 79:10 (2004),  624–629
  73. Multiplex quantum cryptography based on time coding without interferometers

    Pis'ma v Zh. Èksper. Teoret. Fiz., 79:9 (2004),  554–559
  74. Experimental scheme of quantum cryptography on the nonorthogonal states with time shift and a minimum number of optical components

    Pis'ma v Zh. Èksper. Teoret. Fiz., 78:10 (2003),  1156–1161
  75. On coding of a quantum source of states with a finite frequency band: Quantum analogue of the Kotelnikov theorem on sampling

    Pis'ma v Zh. Èksper. Teoret. Fiz., 78:9 (2003),  1087–1092
  76. Simple delay scheme for quantum cryptography based on a Mach-Zehnder optic fiber interferometer

    Pis'ma v Zh. Èksper. Teoret. Fiz., 78:3 (2003),  194–200
  77. Real-time coding in a parallel quantum communication channel

    Pis'ma v Zh. Èksper. Teoret. Fiz., 77:1 (2003),  51–1
  78. Transmission capability of a sequential relativistic quantum communication channel with limited observation time

    Pis'ma v Zh. Èksper. Teoret. Fiz., 76:9 (2002),  683–1
  79. Relativistic quantum cryptography on «arrested» photons

    Pis'ma v Zh. Èksper. Teoret. Fiz., 76:1 (2002),  79–1
  80. Limiting rate of secret-key generation in quantum cryptography in spacetime

    Pis'ma v Zh. Èksper. Teoret. Fiz., 75:10 (2002),  617–1
  81. Erratum: The efficiency of repeaters based on the Einstein-Podolsky-Rosen effect for quantum cryptography in a damping channel

    Pis'ma v Zh. Èksper. Teoret. Fiz., 75:4 (2002),  245–1
  82. The efficiency of repeaters based on the Einstein-Podolsky-Rosen effect for quantum cryptography in a damping channel

    Pis'ma v Zh. Èksper. Teoret. Fiz., 74:10 (2001),  580–585
  83. On the Lorentz-invariant time-energy uncertainty relation for a relativistic photon

    Pis'ma v Zh. Èksper. Teoret. Fiz., 74:8 (2001),  477–482
  84. The role of causality in ensuring the ultimate security of relativistic quantum cryptography

    Pis'ma v Zh. Èksper. Teoret. Fiz., 73:12 (2001),  767–771
  85. Quantum bit commitment in a channel with noise

    Pis'ma v Zh. Èksper. Teoret. Fiz., 73:2 (2001),  114–120
  86. Quantum Monte-Carlo study of one-dimensional Hubbard model with strong correlations

    Fizika Tverdogo Tela, 31:2 (1989),  47–53
  87. Electron spectrum and fermi surfaces of $\mathrm{VI}$ group cubic phases

    Fizika Tverdogo Tela, 29:2 (1987),  330–336
  88. Nonequilibrium phase transitions in covalent semiconductors under action of laser radiation

    Fizika Tverdogo Tela, 27:11 (1985),  3288–3294
  89. Theory of non-equilibrium structure transitions in covalent semiconductors

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:4 (1985),  241–245
  90. On light scattering in superconductors with charge density wave

    Fizika Tverdogo Tela, 25:1 (1983),  144–147

  91. Simple counterexample for the $\mathcal{Z}_2$ classification of topological insulators based on the bulk-boundary correspondence

    Pis'ma v Zh. Èksper. Teoret. Fiz., 102:3 (2015),  216–224


© Steklov Math. Inst. of RAS, 2026