RUS  ENG
Full version
PEOPLE

Oganesyan Leonard Amayakovich

Publications in Math-Net.Ru

  1. Choice of a grid depending on properties of the boundary in the variational-difference method of solution of elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 25:9 (1985),  1353–1364
  2. A variational-difference method for solving two-dimensional linear parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  109–118
  3. Variational-difference schemes on a regular network for the biharmonic equation

    Zh. Vychisl. Mat. Mat. Fiz., 15:2 (1975),  372–383
  4. The solution of elliptic equations with discontinuous coefficients on a regular mesh

    Zh. Vychisl. Mat. Mat. Fiz., 14:4 (1974),  906–918
  5. Singularities of solutions of Navier–Stokes equations at angular points

    Zap. Nauchn. Sem. LOMI, 27 (1972),  131–144
  6. Variational-difference methods for solving the first boundary value problem for the biharmonic equation

    Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972),  1234–1244
  7. On global circulation in barotropic ocean of variable depth

    Dokl. Akad. Nauk SSSR, 198:2 (1971),  333–336
  8. A variational difference scheme on a regular network for the Dirichlet problem

    Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971),  1595–1603
  9. Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary

    Zh. Vychisl. Mat. Mat. Fiz., 9:5 (1969),  1102–1120
  10. Variational-difference schemes for second order linear elliptic equations in a two-dimensional region with a piecewise-smooth boundary

    Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968),  97–114
  11. Convergence of variational-difference schemes in the case of an improved approximation of the boundary

    Dokl. Akad. Nauk SSSR, 170:1 (1966),  41–44
  12. Convergence of difference schemes in case of improved approximation of the boundary

    Zh. Vychisl. Mat. Mat. Fiz., 6:6 (1966),  1029–1042
  13. Inequalities for the convergence of finite difference schemes for degenerate elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965),  351–357

  14. A remark on the article “A variational difference method for solving the first boundary value problem for the biharmonic equation on a regular network”

    Zh. Vychisl. Mat. Mat. Fiz., 13:2 (1973),  520


© Steklov Math. Inst. of RAS, 2026