RUS  ENG
Full version
PEOPLE

Babich Leonid Petrovich

Publications in Math-Net.Ru

  1. Relativistic runaway electron avalanche

    UFN, 190:12 (2020),  1261–1292
  2. Planetary atmospheres as detectors of thunderous neutrons signatures

    Pis'ma v Zh. Èksper. Teoret. Fiz., 109:10 (2019),  645–650
  3. Thunderstorm neutrons

    UFN, 189:10 (2019),  1044–1069
  4. Numerical simulation of positive streamer development in thundercloud field enhanced near raindrops

    Pis'ma v Zh. Èksper. Teoret. Fiz., 103:7 (2016),  510–515
  5. Whether abnormal energy electrons are being produced in electric discharges in dense gases?

    Pis'ma v Zh. Èksper. Teoret. Fiz., 101:11 (2015),  830–835
  6. Mechanism of generation of runaway electrons in a lightning leader

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:7 (2014),  452–456
  7. On amplifications of photonuclear neutron flux in thunderstorm atmosphere and possibility of detecting them

    Pis'ma v Zh. Èksper. Teoret. Fiz., 97:6 (2013),  333–339
  8. Numerical analysis of the concept of a laboratory experiment on the demonstration of runaway electron breakdown under normal conditions at high overvoltages

    Pis'ma v Zh. Èksper. Teoret. Fiz., 95:12 (2012),  712–717
  9. Self-sustained relativistic-runaway-electron avalanches in the transverse field of lightning leader as sources of terrestrial gamma-ray flashes

    Pis'ma v Zh. Èksper. Teoret. Fiz., 94:8 (2011),  647–650
  10. Terrestrial gamma-ray flashes and neutron pulses from direct simulations of gigantic upward atmospheric discharge

    Pis'ma v Zh. Èksper. Teoret. Fiz., 85:10 (2007),  589–593
  11. Generation of neutrons in giant upward atmospheric discharges

    Pis'ma v Zh. Èksper. Teoret. Fiz., 84:6 (2006),  345–348
  12. Analysis of a new electron-runaway mechanism and record-high runaway-electron currents achieved in dense-gas discharges

    UFN, 175:10 (2005),  1069–1091
  13. An experimental investigation of an avalanche of relativistic runaway electrons under normal conditions

    TVT, 42:1 (2004),  5–15
  14. Propagation of an electron beam in atmosphere at altitudes from $15$ to $100$ km: Numerical experiment

    TVT, 38:6 (2000),  868–876
  15. Computer similation of D-T plasma by superhigh magnetic field

    Dokl. Akad. Nauk, 342:1 (1995),  32–35
  16. The bistability of an ensemble of electrons interacting with a dense gas of neutral particles in the electric field: The application to the field of thunderclouds

    TVT, 33:5 (1995),  659–662
  17. Numerical simulation of a nanosecond discharge in helium at atmospheric pressure, developing in the regime of runaway of eelectrons

    TVT, 33:2 (1995),  191–199
  18. Influence of the addition of xenon on the discharge and lasing characteristics of a TEA CO2 laser

    Kvantovaya Elektronika, 21:6 (1994),  550–552
  19. Nanosecond neutron pulse generation by high overvoltage gas discharges in deuterium

    Dokl. Akad. Nauk SSSR, 313:4 (1990),  846–849
  20. High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons

    UFN, 160:7 (1990),  49–82
  21. Runaway of electrons in gas discharges and the origin of the $U(Pd)$ minimum

    Dokl. Akad. Nauk SSSR, 281:6 (1985),  1359–1363
  22. LASER SELF-FOCUSING EMISSION INDUCED BY NON-EQUILIBRIUM OSCILLATING MOLECULE EXCITATION

    Zhurnal Tekhnicheskoi Fiziki, 55:6 (1985),  1170–1172
  23. ENERGY-SPECTRA AND TIME PARAMETERS OF RUNAWAY ELECTRONS IN NANOSECOND BREAKDOWN OF DENSE GASES

    Zhurnal Tekhnicheskoi Fiziki, 55:5 (1985),  956–958
  24. Numerical modeling of spatially homogeneous discharges in systems with initiation in the active volume

    TVT, 23:4 (1985),  635–639
  25. Structure of electron avalanche at high $E/P$

    Dokl. Akad. Nauk SSSR, 266:4 (1982),  840–843
  26. A new type of ionization wave and the mechanism of polarization self-acceleration of electrons in gas discharges under high overvoltage

    Dokl. Akad. Nauk SSSR, 263:1 (1982),  76–79


© Steklov Math. Inst. of RAS, 2026