RUS  ENG
Full version
PEOPLE

Trunin Ryurik Fedorovich

Publications in Math-Net.Ru

  1. Shock compression of porous metals and silicates

    UFN, 182:8 (2012),  829–846
  2. Dynamic compression of hydrogen isotopes at megabar pressures

    UFN, 180:6 (2010),  605–622
  3. Shock compression of liquid nitrogen at a pressure of 320 GPa

    Pis'ma v Zh. Èksper. Teoret. Fiz., 88:3 (2008),  220–223
  4. Shock-wave compression of hydrogen to pressures of 65 GPa

    Pis'ma v Zh. Èksper. Teoret. Fiz., 82:5 (2005),  317–319
  5. Studies performed in Russia into the compressibility of metals in strong shock waves

    TVT, 42:1 (2004),  151–165
  6. X-ray diffraction study of shock-induced phase transformations in zirconium and bismuth

    TVT, 41:2 (2003),  254–258
  7. Shock compression of solid deuterium

    Pis'ma v Zh. Èksper. Teoret. Fiz., 76:7 (2002),  508–510
  8. Shock compression of porous aluminum and nickel at megabar pressures

    TVT, 39:3 (2001),  430–436
  9. Shock compression of condensed materials (laboratory studies)

    UFN, 171:4 (2001),  387–414
  10. Shock compression of porous copper at megabar pressures

    TVT, 38:5 (2000),  754–758
  11. Compression of titanium in shock waves

    TVT, 37:6 (1999),  881–886
  12. Shock compression of snow

    TVT, 37:5 (1999),  732–737
  13. Development of dynamic high-pressure techniques in Russia

    UFN, 169:3 (1999),  323–344
  14. Comparison of the laboratory data on the compressibility of materials with the results obtained during underground nuclear explosions

    TVT, 35:6 (1997),  901–908
  15. Phase transformations of rock salt in the shock wave of an underground nuclear explosion

    TVT, 34:6 (1996),  877–881
  16. Analysis of calculated data on the adiabats of expansion for copper, iron, and aluminum

    TVT, 34:5 (1996),  684–690
  17. Explosive laboratory devices for shock wave compression studies

    UFN, 166:5 (1996),  575–581
  18. Shock compressibility of iron, aluminum and tantalum under terapascal pressures in laboratory conditions

    TVT, 33:2 (1995),  329–331
  19. Dynamic compressibility of molten and cooled metals

    TVT, 33:2 (1995),  222–226
  20. Expansion isentropes of aluminum, iron, molybdenum, lead, and tantalum

    TVT, 33:1 (1995),  40–43
  21. Shock-wave compression of aluminum at pressures of $1.7$ TPa

    TVT, 32:6 (1994),  952–955
  22. Shock compression of molybdenum under pressures of $1.4$ TPa

    TVT, 32:5 (1994),  786–788
  23. Shock-compressibility measurements for iron, copper, lead, and titanium under pressures of $20$ TPa

    TVT, 32:5 (1994),  692–695
  24. Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions

    UFN, 164:11 (1994),  1215–1237
  25. Unique features in the shock compressibility of silicon dioxide upon manifestation of phase transition kinetics singularities

    Fizika Goreniya i Vzryva, 23:1 (1987),  98–101
  26. Shock adiabatic curves of metals

    Prikl. Mekh. Tekh. Fiz., 22:2 (1981),  3–34
  27. New data on the compressibility of oxides and fluorides and the Earth's homogeneous composition hypothesis

    Dokl. Akad. Nauk SSSR, 211:6 (1973),  1330–1332
  28. On a feature of shock compressibility of quartzite

    Dokl. Akad. Nauk SSSR, 195:4 (1970),  811–813
  29. Phase transformations when water is compressed by strong shock waves

    Dokl. Akad. Nauk SSSR, 121:1 (1958),  67–69

  30. Extreme states of metals: investigation using shock wave techniques

    UFN, 181:4 (2011),  416–422
  31. Лев Владимирович Альтшулер (к девяностолетию со дня рождения)

    Fizika Goreniya i Vzryva, 40:2 (2004),  141–144
  32. In memory of Lev Vladimirovich Al'tshuler

    UFN, 174:3 (2004),  333–334


© Steklov Math. Inst. of RAS, 2026