RUS  ENG
Full version
PEOPLE

Makarov Grigorii Nikolaevich

Publications in Math-Net.Ru

  1. Laser separation of boron isotopes: research results and options for technological implementation

    UFN, 195:5 (2025),  478–518
  2. Detection of resonant collisional radiative transfer of the vibrational energy between molecules subjected to infrared laser multiphoton excitation in a two-component medium

    Pis'ma v Zh. Èksper. Teoret. Fiz., 120:8 (2024),  620–626
  3. New approaches to molecular laser separation of uranium isotopes

    UFN, 194:1 (2024),  48–59
  4. Increase in the efficiency of the isotope-selective infrared laser multiphoton dissociation of $^{11}$BCl$_3$ molecules in a mixture with SF$_6$ serving as a sensitizer and an acceptor of radicals

    Pis'ma v Zh. Èksper. Teoret. Fiz., 117:10 (2023),  734–739
  5. On the possibility of the effective isotope-selective infrared dissociation of $^{235}$UF$_6$ molecules vibrationally excited by bichromatic laser radiation

    Pis'ma v Zh. Èksper. Teoret. Fiz., 115:11 (2022),  703–709
  6. Intense infrared laser-induced radiation-collision involvement of molecules that do not absorb laser radiation in resonance with a laser field in a two-component molecular medium

    Pis'ma v Zh. Èksper. Teoret. Fiz., 115:5 (2022),  292–296
  7. Towards molecular laser separation of uranium isotopes

    UFN, 192:6 (2022),  569–608
  8. Possibility of resonant three-photon isotope-selective excitation of vibrational states with v = 3 of the UF$_6$ molecule mode $\nu_3$ by radiation from two pulsed IR lasers in a gas-dynamically cooled molecular flow

    Kvantovaya Elektronika, 51:7 (2021),  643–648
  9. Strong increase in the efficiency of isotope-selective infrared laser dissociation of molecules under nonequilibrium thermodynamic conditions in a shock wave by means of the use of a mixture with a resonantly absorbing gas

    Pis'ma v Zh. Èksper. Teoret. Fiz., 112:4 (2020),  226–232
  10. Isotope-selective infrared laser dissociation of molecules with a small isotopic shift in a gas-dynamically cooled molecular flow interacting with a solid surface

    Pis'ma v Zh. Èksper. Teoret. Fiz., 111:6 (2020),  361–369
  11. Strong mutual increase in the efficiency of isotope-selective laser IR dissociation of molecules under nonequilibrium thermodynamic conditions of the compression shock under irradiation in a bimolecular mixture

    Kvantovaya Elektronika, 50:11 (2020),  1036–1042
  12. New results for laser isotope separation using low-energy methods

    UFN, 190:3 (2020),  264–290
  13. Isotope selective control over clustering of SF$_6$ molecules and dissociation of (SF$_{6}$)$_{m}$Ar$_{n}$ van der Waals clusters using an IR laser

    Optics and Spectroscopy, 127:1 (2019),  66–73
  14. Infrared laser-induced isotope-selective dissociation of mixed (CF3Br) mArn van der Waals clusters

    Kvantovaya Elektronika, 49:6 (2019),  593–599
  15. Suppression of clustering of CF3Br molecules with argon atoms by CO2-laser radiation in gas-dynamic expansion of a CF3Br – Ar mixture: bromine isotope selectivity

    Kvantovaya Elektronika, 48:7 (2018),  667–674
  16. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br – Ar mixture

    Kvantovaya Elektronika, 48:2 (2018),  157–164
  17. Control of the parameters and composition of molecular and cluster beams by means of IR lasers

    UFN, 188:7 (2018),  689–719
  18. Laser IR fragmentation of molecular clusters: the role of channels for energy input and relaxation, the influence of surroundings, and the dynamics of fragmentation

    UFN, 187:3 (2017),  241–276
  19. Determination of the composition and content of pulsed cluster beams from time-of-flight mass spectra of cluster fragments

    Pis'ma v Zh. Èksper. Teoret. Fiz., 104:6 (2016),  440–445
  20. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    Kvantovaya Elektronika, 46:3 (2016),  248–254
  21. Low energy methods of molecular laser isotope separation

    UFN, 185:7 (2015),  717–751
  22. Laser ultraviolet fragmentation of homogeneous (CF$_3$I)$_n$ clusters in a molecular beam and (CF$_3$I)$_n$ clusters inside of large (Xe)$_m$ clusters or on their surface

    Pis'ma v Zh. Èksper. Teoret. Fiz., 97:12 (2013),  800–806
  23. Disintegration of argon clusters in collisions with highly vibrationally excited SF$_6$ molecules in crossed molecular and cluster beams

    Pis'ma v Zh. Èksper. Teoret. Fiz., 97:2 (2013),  82–87
  24. Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography

    UFN, 183:7 (2013),  673–718
  25. Laser control of the capture of chromophore molecules by nanoclusters of noble gases in crossed molecular and cluster beams

    Pis'ma v Zh. Èksper. Teoret. Fiz., 93:3 (2011),  123–128
  26. Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams

    UFN, 181:4 (2011),  365–387
  27. Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles

    UFN, 180:2 (2010),  185–207
  28. Universal probe method for measuring the temperature of large clusters (nanoparticles) in a cluster beam

    Pis'ma v Zh. Èksper. Teoret. Fiz., 90:10 (2009),  712–717
  29. Detection of SF$_6$ molecules sublimating from the surface of (CO$_2$)$_N$ nanoparticles in a cluster beam by the infrared multiphoton excitation method

    Pis'ma v Zh. Èksper. Teoret. Fiz., 89:8 (2009),  468–472
  30. IR multiphoton excitation of SF6 molecules subliming from the surface of (CO2)N nanoparticles in a cluster beam

    Kvantovaya Elektronika, 39:11 (2009),  1054–1058
  31. Cluster spectroscopy using high-intensity pulses from vacuum UV free electron lasers

    UFN, 179:5 (2009),  487–516
  32. Cluster temperature. Methods for its measurement and stabilization

    UFN, 178:4 (2008),  337–376
  33. Increase in the probability of passing molecules through a cooled multichannel plate as induced by a high-power infrared laser

    Pis'ma v Zh. Èksper. Teoret. Fiz., 83:3 (2006),  115–119
  34. Efficiency of passage of highly vibrationally excited CF3I molecules in a beam through a cooled converging hollow truncated cone

    Kvantovaya Elektronika, 36:9 (2006),  889–894
  35. On the possibility of development of a photochemical unit based on an NH3 laser with an intracavity reactor

    Kvantovaya Elektronika, 36:3 (2006),  292–298
  36. On the possibility of selecting molecules embedded in superfluid helium nanodroplets (clusters)

    UFN, 176:11 (2006),  1155–1176
  37. Extreme processes in clusters impacting on a solid surface

    UFN, 176:2 (2006),  121–174
  38. Selective processes of IR excitation and dissociation of molecules in gasdynamically cooled jets and flows

    UFN, 175:1 (2005),  41–84
  39. Spectroscopy of single molecules and clusters inside helium nanodroplets. Microscopic manifestation of ${}^4\mathrm{Νε}$ superfluidity

    UFN, 174:3 (2004),  225–257
  40. Studies on high-intensity pulsed molecular beams and flows interacting with a solid surface

    UFN, 173:9 (2003),  913–940
  41. Generating intense beams of low-energy molecules

    Pis'ma v Zh. Èksper. Teoret. Fiz., 76:5 (2002),  341–344
  42. Pulse duration control for intense molecular beams

    Pis'ma v Zh. Èksper. Teoret. Fiz., 75:3 (2002),  159–169
  43. Generation of high-energy secondary pulsed molecular beams

    Pis'ma v Zh. Èksper. Teoret. Fiz., 73:12 (2001),  735–739
  44. Selective IR multiphoton dissociation of CF3I in a nonequilibrium pressure shock

    Kvantovaya Elektronika, 31:3 (2001),  263–267
  45. Efficiency of selective IR multiphoton dissociation of molecules in a pulsed gas-dynamic flow interacting with a solid surface

    Kvantovaya Elektronika, 30:8 (2000),  738–740
  46. Isotopically selective IR multiphoton dissociation of CF3I molecules in a pulsed gasdynamic flow

    Kvantovaya Elektronika, 25:6 (1998),  545–549
  47. Generation of multiband tunable radiation in TEA CO2 lasers

    Kvantovaya Elektronika, 24:7 (1997),  643–648
  48. Carbon isotope separation by infrared multiphoton dissociation of CF2HCl molecules with a separation reactor in a laser cavity

    Kvantovaya Elektronika, 23:1 (1996),  81–88
  49. Measurement of the emission line width of TEA CO2 lasers using tunable diode lasers

    Kvantovaya Elektronika, 17:8 (1990),  1077–1080
  50. Role of the mode composition of laser radiation in the case of pulsed infrared excitation of molecules

    Kvantovaya Elektronika, 16:8 (1989),  1664–1671
  51. Nonlinear absorption and generation of microwave radiation due to interaction of ammonia molecules with high-power infrared radiation

    Kvantovaya Elektronika, 15:8 (1988),  1577–1586
  52. Dynamic tuning of the frequency of pulsed CO2 lasers and the attainment of multispike lasing using an intracavity cell containing an infrared absorbing gas

    Kvantovaya Elektronika, 13:9 (1986),  1801–1807
  53. Control of the duration of CO2 laser pulses by an intracavity infrared-absorbing gas cell

    Kvantovaya Elektronika, 13:8 (1986),  1665–1669
  54. Multiphoton infrared absorption in CF3I molecules cooled in a pulsed jet

    Kvantovaya Elektronika, 10:7 (1983),  1435–1441
  55. Role of the intensity (duration) of excitation pulses in multiphoton infrared absorption and dissociation of SF6 molecules

    Kvantovaya Elektronika, 10:7 (1983),  1308–1315
  56. Some characteristics of spectra of multiphoton absorption in SF6 under conditions of essentially collisionless excitation of the molecules by CO2 laser pulses

    Kvantovaya Elektronika, 9:8 (1982),  1668–1672
  57. Separation of osmium isotopes by dissociation of the OsO4 molecule in a two-frequency infrared laser field

    Kvantovaya Elektronika, 4:7 (1977),  1590–1591
  58. Separation of isotopes in a strong infrared laser field

    Kvantovaya Elektronika, 3:4 (1976),  802–810
  59. Separation of B10 and B11 isotopes in a strong infrared CO2 laser radiation field

    Kvantovaya Elektronika, 2:10 (1975),  2197–2201


© Steklov Math. Inst. of RAS, 2026