RUS  ENG
Full version
PEOPLE

Eletskii Aleksandr Valentinovich

Publications in Math-Net.Ru

  1. Graphene-based supercapacitors

    UFN, 195:6 (2025),  635–657
  2. Electrical properties of thermally reduced graphene oxide

    Nanosystems: Physics, Chemistry, Mathematics, 9:1 (2018),  98–101
  3. Filling carbon nanotubes with argon

    Nanosystems: Physics, Chemistry, Mathematics, 9:1 (2018),  85–88
  4. Nonlinear resistance of polymer composites with carbon nanotube additives in the percolation state

    Zhurnal Tekhnicheskoi Fiziki, 86:10 (2016),  64–68
  5. Nanocarbon materials: Physicochemical and exploitation properties, synthesis methods, and enegretic applications

    TVT, 53:1 (2015),  117–140
  6. Electrical characteristics of carbon nanotube-doped composites

    UFN, 185:3 (2015),  225–270
  7. Effect of thermal motion of residual gas molecules on the degradation of the field emission cathode based on carbon nanotubes

    Zhurnal Tekhnicheskoi Fiziki, 83:10 (2013),  122–127
  8. Degradation of a carbon nanotube-based field-emission cathode during ion sputtering

    Zhurnal Tekhnicheskoi Fiziki, 82:7 (2012),  112–116
  9. Influence of the electric field on the alignment of carbon nanotubes during their growth and emission

    Zhurnal Tekhnicheskoi Fiziki, 82:2 (2012),  113–121
  10. Frequency converter based on a field electron emitter

    Zhurnal Tekhnicheskoi Fiziki, 82:1 (2012),  156–158
  11. Thermophysical properties of nanoobjects: Data classification and validity evaluation

    TVT, 50:4 (2012),  524–532
  12. Optimization of the parameters of a carbon nanotube-based field-emission cathode

    Zhurnal Tekhnicheskoi Fiziki, 81:4 (2011),  111–116
  13. Graphene: fabrication methods and thermophysical properties

    UFN, 181:3 (2011),  233–268
  14. Electric field enhancement in field-emission cathodes based on carbon nanotubes

    Zhurnal Tekhnicheskoi Fiziki, 80:2 (2010),  130–137
  15. Electron field emitters based on carbon nanotubes

    UFN, 180:9 (2010),  897–930
  16. Transport properties of carbon nanotubes

    UFN, 179:3 (2009),  225–242
  17. Mechanical properties of carbon nanostructures and related materials

    UFN, 177:3 (2007),  233–274
  18. Quantum corrections to the equilibrium rate constants of inelastic processes

    UFN, 175:3 (2005),  299–313
  19. Sorption properties of carbon nanostructures

    UFN, 174:11 (2004),  1191–1231
  20. Laser ion beam formation for nanotechnologies

    Pis'ma v Zh. Èksper. Teoret. Fiz., 78:4 (2003),  291–294
  21. Carbon nanotubes and their emission properties

    UFN, 172:4 (2002),  401–438
  22. Endohedral structures

    UFN, 170:2 (2000),  113–142
  23. Saturated vapour pressure and enthalpy of sublimation of C84

    Mendeleev Commun., 8:4 (1998),  141–143
  24. Fullerenes in solutions

    UFN, 168:11 (1998),  1195–1220
  25. Carbon nanotubes

    UFN, 167:9 (1997),  945–972
  26. Fullerenes in solutions

    TVT, 34:2 (1996),  308–323
  27. Nonuniform gas discharge plasma

    UFN, 166:11 (1996),  1197–1217
  28. The thermodynamics of $\mathrm{C}_{60}$ fullerite as a system of close-packed spherically symmetric Molecules with short-range interaction

    TVT, 33:6 (1995),  862–866
  29. Fullerenes and carbon structures

    UFN, 165:9 (1995),  977–1009
  30. New directions in the study of fullerenes (International Conference on Fullerenes, San Francisco, May 1994)

    UFN, 164:9 (1994),  1007–1009
  31. Fullerenes

    UFN, 163:2 (1993),  33–60
  32. KINETICS OF PREBREAKDOWN PHENOMENA IN ATMOSPHERE AIR

    Zhurnal Tekhnicheskoi Fiziki, 61:10 (1991),  70–75
  33. QUASI-STATIONARY PARAMETERS OF CLUSTER PLASMA OF HIGH-PRESSURE INERT-GAS WITH CONTRIBUTION OF STEP PROCESSES

    Zhurnal Tekhnicheskoi Fiziki, 61:7 (1991),  30–36
  34. The C$_{60}$ cluster as a new form of carbon

    UFN, 161:7 (1991),  173–192
  35. SELECTIVITY OF 2-STEP PULSE ATOMIC PHOTOIONIZATION IN STRONG FIELDS WITH REGARD TO THE DOPPLER WIDENING

    Zhurnal Tekhnicheskoi Fiziki, 60:11 (1990),  29–37
  36. ELECTRIC BREAKDOWN IN OZONE-ADMIXED ATMOSPHERE

    Zhurnal Tekhnicheskoi Fiziki, 60:8 (1990),  192–194
  37. NONSTATIONARY OPTOGALVANIC EFFECT IN GLOW-DISCHARGE WITH HOLLOW-CATHODE UNDER THE SPACE RESOLUTION

    Zhurnal Tekhnicheskoi Fiziki, 59:3 (1989),  90–98
  38. Decay of a photoresonance plasma

    TVT, 27:3 (1989),  456–460
  39. Properties of cluster ions

    UFN, 159:1 (1989),  45–81
  40. Resonance radiation plasma (photoresonance plasma)

    UFN, 155:2 (1988),  265–298
  41. ANGULAR-DISTRIBUTION OF MOLECULAR-IONS FORMED UNDER ASSOCIATIVE IONIZATION IN CROSSED BEAMS

    Zhurnal Tekhnicheskoi Fiziki, 57:11 (1987),  2170–2177
  42. ATTACHING-VIBRATIONAL INSTABILITY

    Zhurnal Tekhnicheskoi Fiziki, 56:5 (1986),  850–855
  43. Dissociative attachment of an electron to a molecule

    UFN, 147:3 (1985),  459–484
  44. RECOMBINATION MECHANISMS IN SOLID MOLECULAR GAS, EXCITED BY ELECTRON-BEAMS

    Zhurnal Tekhnicheskoi Fiziki, 54:9 (1984),  1829–1831
  45. RING SOURCE OF DENSE, NON-COLLISION PLASMA AND IONIZING-RADIATION

    Zhurnal Tekhnicheskoi Fiziki, 54:6 (1984),  1219–1222
  46. PARAMETERS OF PLASMA, PRODUCED BY AN ELECTRON-BEAM IN A DENSE MOLECULAR GAS

    Zhurnal Tekhnicheskoi Fiziki, 53:8 (1983),  1484–1488
  47. Баланс энергии электронов в разряде молекулярного кислорода

    TVT, 21:2 (1983),  385–387
  48. Dissociative recombination of electrons and molecular ions

    UFN, 136:1 (1982),  25–59
  49. On one type of the nonequilibrium distribution of molecules according to the vibrational states

    Dokl. Akad. Nauk SSSR, 260:3 (1981),  591–595
  50. Heterogeneous thermal explosion of ozone

    Dokl. Akad. Nauk SSSR, 257:3 (1981),  592–596
  51. Evolution of a sharp peak in the distribution of diatomic molecules over vibrational states

    Kvantovaya Elektronika, 8:3 (1981),  640–643
  52. Distribution function and mean energy of electrons in a high-frequency molecular-gas discharge

    TVT, 19:1 (1981),  8–15
  53. Processes in chemical lasers

    UFN, 134:2 (1981),  237–278
  54. Two-level interaction of the powerful $\mathrm{CO}_2$-laser radiation with $\mathrm{SF}_6$ molecule

    Dokl. Akad. Nauk SSSR, 252:3 (1980),  589–592
  55. Longitudinal Diffusion of Electrons in Atomic and Molecular, Gases

    TVT, 18:2 (1980),  239–244
  56. Constriction of discharges in electronegative molecular gases

    TVT, 17:6 (1979),  1153–1160
  57. Константа скорости колебательного возбуждения молекулы $\mathrm{F}_2$ электронным ударом

    TVT, 17:5 (1979),  1100–1102
  58. Excimer lasers

    UFN, 125:2 (1978),  279–314
  59. Heat-conduction mechanism in nonequilibrium molecular gas

    TVT, 15:6 (1977),  1173–1177
  60. Diagnostics of a low-pressure discharge

    TVT, 14:1 (1976),  207–208
  61. Optimal characteristics of high-pressure metal vapour laser

    Dokl. Akad. Nauk SSSR, 220:2 (1975),  318–321
  62. Probabilities of spontaneous radiation for vibration-rotation transitions of $\mathrm{CO}_2$ molecule

    Dokl. Akad. Nauk SSSR, 215:6 (1974),  1345–1348
  63. The distribution function and radiation line contour of ions in the low-pressure discharge

    Dokl. Akad. Nauk SSSR, 210:1 (1973),  62–65
  64. Функция распределения и контур линии излучения ионов в разряде низкого давления

    TVT, 11:4 (1973),  689–694
  65. Electron distribution function in high-frequency, low-pressure discharge

    Dokl. Akad. Nauk SSSR, 206:5 (1972),  1082–1084
  66. Лазер на окиси углерода

    UFN, 106:4 (1972),  723–735
  67. Statistical Model of Vibrational Relaxation of the $\mathrm{Co_2}$ Molecule

    TVT, 9:1 (1971),  193–194
  68. Optically pumped carbon dioxide laser

    Dokl. Akad. Nauk SSSR, 194:2 (1970),  298–301
  69. Carbon dioxide laser in the regime of single impulses

    Dokl. Akad. Nauk SSSR, 190:4 (1970),  809–812
  70. Обтекание клина газом при запаздывании части внутренней энергии

    Prikl. Mekh. Tekh. Fiz., 1:2 (1960),  54–63

  71. Fullerene journal

    UFN, 165:9 (1995),  1101–1102
  72. Vladas Bronislovo Leonas (Obituary)

    UFN, 163:2 (1993),  107–108
  73. Photoacoustic, photothermal and photochemical processes in gases

    UFN, 160:5 (1990),  146–147


© Steklov Math. Inst. of RAS, 2026