RUS  ENG
Full version
PEOPLE

Lukyanov Vyacheslav A

Publications in Math-Net.Ru

  1. (Anti) self-dual Einstein metrics of zero signature, their Petrov classes and connection with Kahler and para-Kahler structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9,  39–53
  2. Hermitian metrics with (anti-)self-dual Riemann tensor

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021),  616–633
  3. Specificity of Petrov classification of (anti-)self-dual zero signature metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9,  56–67
  4. The main theorem for (anti)self-dual conformal torsion-free connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 2,  29–38
  5. Duality equations on a 4-manifold of conformal torsion-free connection and some of their solutions for the zero signature

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019),  207–228
  6. Conformal connection with scalar curvature

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018),  22–35
  7. The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space

    Sib. J. Pure and Appl. Math., 17:2 (2017),  21–38
  8. Yang–Mills equations on conformally connected torsion-free 4-manifolds with different signatures

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017),  633–650
  9. The complete solution of the Yang-Mills equations for centrally symmetric metric in the presence of electromagnetic field

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015),  462–473
  10. Solving Yang–Mills equations for 4-metrics of Petrov types II, N, III

    J. Sib. Fed. Univ. Math. Phys., 7:4 (2014),  472–488
  11. Extremal curves in the conformal space and in an associated bundle

    J. Sib. Fed. Univ. Math. Phys., 7:1 (2014),  68–78
  12. Gauge-invariant Tensors of 4-Manifold with Conformal Torsion-free Connection and their Applications for Modeling of Space-time

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  180–198
  13. Purely time-dependent solutions to the Yang–Mills equations on a $4$-dimensional manifold with conformal torsion-free connection

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  40–52
  14. Einstein's equations on a $4$-manifold of conformal torsion-free connection

    J. Sib. Fed. Univ. Math. Phys., 5:3 (2012),  393–408
  15. The full decision of Young–Mills equations for the central-symmetric metrics

    J. Sib. Fed. Univ. Math. Phys., 4:3 (2011),  350–362
  16. The relationship between the Einstein and Yang–Mills equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 9,  69–74
  17. One-dimensional Lagrangians generated by a quadratic form

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 5,  33–44
  18. Yang–Mills equations in 4-dimensional conform connection manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3,  67–72
  19. Connection of Young-Mills Equations with Einstein and Maxwell's Equations

    J. Sib. Fed. Univ. Math. Phys., 2:4 (2009),  432–448


© Steklov Math. Inst. of RAS, 2026