RUS  ENG
Full version
PEOPLE

Maslovskaya Larisa Viktorovna

Publications in Math-Net.Ru

  1. The Nitsche mortar method for matching grids in a mixed finite element method

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 4,  19–35
  2. Building graph separators with the recursive rotation algorithm for nested dissections method

    Sib. Zh. Vychisl. Mat., 13:3 (2010),  297–321
  3. The penalty method for grid matching in mixed finite element methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3,  37–54
  4. The penalty method of grids matching in the mixed Herrmann–Miyoshi scheme

    Sib. Zh. Vychisl. Mat., 12:3 (2009),  297–312
  5. Mortar method for matching grids in a mixed scheme as applied to the biharmonic equation

    Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009),  681–695
  6. A penalty method for grid matching in the finite element method

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 10,  33–43
  7. Технология построения символьных классов в компьютерной алгебре

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2005, no. 2,  18–28
  8. The mixed finite element method in problems of the theory of shells

    Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994),  748–769
  9. Covergence of a mixed finite-element method in problems of the stability of shallow shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 10,  21–31
  10. A generalized Cholesky algorithm for plate and shell theory problems

    Zh. Vychisl. Mat. Mat. Fiz., 32:9 (1992),  1492–1499
  11. The conditions for the applicability of the generalized Cholesky algorithm

    Zh. Vychisl. Mat. Mat. Fiz., 32:3 (1992),  339–347
  12. Mixed variational formulations of problems in the theory of shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 2,  69–78
  13. The best possible for the convergence of the semimixed finite element method for the main boundary-value problems of the theory of shallow shells in polygonal regions

    Zh. Vychisl. Mat. Mat. Fiz., 30:4 (1990),  513–520
  14. Programming a generalized cholesky algorithm for mixed discrete analogues of elliptic boundary-value problems

    Zh. Vychisl. Mat. Mat. Fiz., 30:3 (1990),  420–429
  15. A generalized Cholesky algorithm for mixed discrete analogues of elliptic boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989),  67–74
  16. Convergence of a semimixed finite element method for fundamental boundary value problems of the theory of shallow shells in weighted Sobolev spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3,  36–43
  17. Mixed variational formulations of problems of the theory of shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 9,  37–43
  18. Semimixed finite element method in problems of deformation of shallow shells

    Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985),  1235–1245
  19. Behavior of solutions of boundary value problems for the biharmonic equation in domains with corner points

    Differ. Uravn., 19:12 (1983),  2172–2175
  20. The convergence of variational-difference methods for a nonlinear boundary value problem of the theory of flexible plates

    Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  943–950
  21. The convergence of difference methods for certain degenerate quasilinear equations of parabolic type

    Zh. Vychisl. Mat. Mat. Fiz., 12:6 (1972),  1444–1455
  22. On the problem of stability of difference equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 2,  61–67
  23. Stability of difference equations

    Differ. Uravn., 2:9 (1966),  1176–1183


© Steklov Math. Inst. of RAS, 2026