|
|
Publications in Math-Net.Ru
-
The Nitsche mortar method for matching grids in a mixed finite element method
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 4, 19–35
-
Building graph separators with the recursive rotation algorithm for nested dissections method
Sib. Zh. Vychisl. Mat., 13:3 (2010), 297–321
-
The penalty method for grid matching in mixed finite element methods
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3, 37–54
-
The penalty method of grids matching in the mixed Herrmann–Miyoshi scheme
Sib. Zh. Vychisl. Mat., 12:3 (2009), 297–312
-
Mortar method for matching grids in a mixed scheme as applied to the biharmonic equation
Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009), 681–695
-
A penalty method for grid matching in the finite element method
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 10, 33–43
-
Технология построения символьных классов в компьютерной алгебре
Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2005, no. 2, 18–28
-
The mixed finite element method in problems of the theory of shells
Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994), 748–769
-
Covergence of a mixed finite-element method in problems of the stability of shallow shells
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 10, 21–31
-
A generalized Cholesky algorithm for plate and shell theory problems
Zh. Vychisl. Mat. Mat. Fiz., 32:9 (1992), 1492–1499
-
The conditions for the applicability of the generalized Cholesky algorithm
Zh. Vychisl. Mat. Mat. Fiz., 32:3 (1992), 339–347
-
Mixed variational formulations of problems in the theory of shells
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 2, 69–78
-
The best possible for the convergence of the semimixed finite element method for the main boundary-value problems of the theory of shallow shells in polygonal regions
Zh. Vychisl. Mat. Mat. Fiz., 30:4 (1990), 513–520
-
Programming a generalized cholesky algorithm for mixed discrete analogues of elliptic boundary-value problems
Zh. Vychisl. Mat. Mat. Fiz., 30:3 (1990), 420–429
-
A generalized Cholesky algorithm for mixed discrete analogues of elliptic boundary value problems
Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989), 67–74
-
Convergence of a semimixed finite element method for fundamental boundary value problems of the theory of shallow shells in weighted Sobolev spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3, 36–43
-
Mixed variational formulations of problems of the theory of shells
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 9, 37–43
-
Semimixed finite element method in problems of deformation of shallow shells
Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985), 1235–1245
-
Behavior of solutions of boundary value problems for the biharmonic equation in domains with corner points
Differ. Uravn., 19:12 (1983), 2172–2175
-
The convergence of variational-difference methods for a nonlinear boundary value problem of the theory of flexible plates
Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978), 943–950
-
The convergence of difference methods for certain degenerate quasilinear equations of parabolic type
Zh. Vychisl. Mat. Mat. Fiz., 12:6 (1972), 1444–1455
-
On the problem of stability of difference equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 2, 61–67
-
Stability of difference equations
Differ. Uravn., 2:9 (1966), 1176–1183
© , 2026