RUS  ENG
Full version
PEOPLE

Zarubin Anatolii Georgievich

Publications in Math-Net.Ru

  1. Galerkin – Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary

    Computer Research and Modeling, 5:1 (2013),  3–10
  2. Projection and projection-difference methods for the solution of the Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  898–912
  3. Asymptotic error estimates of a linearized projection-difference method for a differential equation with a monotone operator

    Sib. Zh. Vychisl. Mat., 13:4 (2010),  387–401
  4. Error estimates for the Galerkin method as applied to time-dependent equations

    Zh. Vychisl. Mat. Mat. Fiz., 49:9 (2009),  1643–1651
  5. Оценка погрешности проекционно–разностного метода для линейного дифференциально–операторного уравнения

    Matem. Mod. Kraev. Zadachi, 3 (2007),  53–55
  6. On the rate of convergence of Rothe's method for a system of Burgers equations in a noncylindrical domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 4,  12–19
  7. On the convergence velocity of Rothe's method for parabolic equation in noncylindric domain

    Dal'nevost. Mat. Zh., 5:1 (2004),  5–11
  8. On the method of Galerkin for the quasilinear parabolic equations in noncylindric domain

    Dal'nevost. Mat. Zh., 3:1 (2002),  3–17
  9. On the Rothe and Rothe–Galerkin methods for a quasilinear operator-differential equation

    Differ. Uravn., 32:12 (1996),  1683–1690
  10. An initial and boundary value problem for the non-stationary heat-convection equations

    Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  728–738
  11. On an iterational method for the approximate solution of an initial- and boundary-value problem for the heat-convection equations

    Zh. Vychisl. Mat. Mat. Fiz., 33:8 (1993),  1218–1227
  12. An iterative method for solving the Cauchy problem for a quasilinear operator-differential equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 12,  21–27
  13. On the rate of convergence of the Faedo–Galerkin method for quasilinear nonstationary operator equations

    Differ. Uravn., 26:12 (1990),  2051–2059
  14. Investigation of the Galerkin–Petrov projection procedure by the method of fractional powers

    Dokl. Akad. Nauk SSSR, 297:4 (1987),  780–784
  15. Mixed boundary value problems in a nonsmooth domain for quasilinear equations that contain the biharmonic operator

    Differ. Uravn., 23:6 (1987),  1021–1029
  16. On the rate of convergence of the Rothe–Galerkin method for operator differential equations

    Differ. Uravn., 22:12 (1986),  2135–2144
  17. The rate of convergence of projection methods in the eigenvalue problem for equations of a special type

    Zh. Vychisl. Mat. Mat. Fiz., 25:7 (1985),  963–972
  18. On the rate of convergence of the Bubnov-Galerkin method for eigenvalue problems

    Zh. Vychisl. Mat. Mat. Fiz., 24:2 (1984),  194–202
  19. On the principle of absence of limited modes in the problem of absolute stability for distributed systems

    Avtomat. i Telemekh., 1983, no. 3,  13–19
  20. The Rothe-Galerkin method for a class of linear nonstationary systems

    Differ. Uravn., 19:12 (1983),  2141–2148
  21. Existence of periodic solutions in the problem of current circulation in a barotropic ocean

    Sibirsk. Mat. Zh., 24:4 (1983),  205–209
  22. On the rate of convergence of the Faedo–Galerkin method for linear nonstationary equations

    Differ. Uravn., 18:4 (1982),  639–645
  23. On the rate of convergence of projection methods in the eigenvalue problem

    Zh. Vychisl. Mat. Mat. Fiz., 22:6 (1982),  1308–1315
  24. The rate of convergence of Galerkin's method for quasilinear parabolic equations

    Differ. Uravn., 16:2 (1980),  366–369
  25. A boundary value problem for equations of vector flows in the ocean

    Sibirsk. Mat. Zh., 21:1 (1980),  63–73
  26. The speed of convergence of projection methods for linear equations

    Zh. Vychisl. Mat. Mat. Fiz., 19:4 (1979),  1048–1053
  27. Some problems of mechanics with discontinuous boundary conditions and a nonsmooth boundary

    Differ. Uravn., 14:9 (1978),  1632–1637
  28. The method of moments for a class of nonlinear equations

    Sibirsk. Mat. Zh., 19:3 (1978),  577–586
  29. Solvability, and the convergence of the Galerkin method for the equations of flexible plates and shells in the case of a one-dimensional problem

    Differ. Uravn., 12:5 (1976),  925–927
  30. Solvability of a boundary value problem for a certain class of nonlinear ordinary differential equations

    Differ. Uravn., 12:3 (1976),  558–560
  31. Approximate methods for the solution of a certain class of nonlinear operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 16:3 (1976),  567–576
  32. Approximate solutions of a certain class of nonlinear nonstationary equations

    Differ. Uravn., 9:11 (1973),  1966–1974
  33. A certain class of nonlinear operator equations

    Dokl. Akad. Nauk SSSR, 184:3 (1969),  530–533
  34. Boundary layer equation in the two-dimensional theory of ocean flows

    Dokl. Akad. Nauk SSSR, 179:4 (1968),  798–801
  35. The problem of nonstationary free convection

    Zh. Vychisl. Mat. Mat. Fiz., 8:6 (1968),  1378–1383


© Steklov Math. Inst. of RAS, 2026