RUS  ENG
Full version
PEOPLE

Kudinov Igor Vasilievich

Publications in Math-Net.Ru

  1. Modeling of gas oscillations in a methane pyrolysis reactor using a locally non-equilibrium Navier–Stokes equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:4 (2025),  778–792
  2. Study of the locally nonequilibrium process of induction heating of metal in a hydrogen generation reactor

    Applied Mathematics & Physics, 56:2 (2024),  153–162
  3. Mathematical modeling of gas oscillations in a methane pyrolysis reactor

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024),  773–789
  4. Investigation of the thermal stressed state of a hydrogen recovery reactor

    Prikl. Mekh. Tekh. Fiz., 63:1 (2022),  162–174
  5. On a method for calculating heat transfer in a moving fluid taking into account energy dissipation

    Prikl. Mekh. Tekh. Fiz., 61:4 (2020),  67–76
  6. A method of obtaining analytical solutions to boundary value problems based on defining additional boundary conditions and additional desired functions

    Sib. Zh. Vychisl. Mat., 22:2 (2019),  153–165
  7. Exact analytical solution for the stationary two-dimensional heat conduction problem with a heat source

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019),  195–203
  8. Strongly nonequilibrium model of thermal ignition with account for space–time nonlocality

    Fizika Goreniya i Vzryva, 54:6 (2018),  25–29
  9. Development of mathematical models and research strongly nonequilibrium developments taking into account space-time nonlocality

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018),  116–152
  10. Additional boundary conditions in unsteady-state heat conduction problems

    TVT, 55:4 (2017),  556–563
  11. Analytic solutions to heat transfer problems on a basis of determination of a front of heat disturbance

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11,  27–41
  12. On one method for solving transient heat conduction problems with asymmetric boundary conditions

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016),  342–353
  13. A method for solving problems of heat transfer during the flow of fluids in a plane channel

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016),  109–120
  14. Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation

    TVT, 53:4 (2015),  551–555
  15. Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  669–680
  16. Heat transfer simulation in stirring boundary layer using the semiempirical turbulence theory

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  157–169
  17. Generalized functions in thermal conductivity problems for multilayered constructions

    TVT, 51:6 (2013),  912–922
  18. Studying heat conduction taking into account the finite rate of heat propagation

    TVT, 51:2 (2013),  301–310
  19. One method of reception of the exact analytical decision of the hyperbolic equation of heat conductivity on the basis of use of orthogonal methods

    TVT, 50:1 (2012),  118–125
  20. Heat transfer in Couette flow corrected for energy dissipation by the third kind boundary conditions

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(28) (2012),  136–144
  21. Математическое моделирование теплопроводности при переменных физических свойствах среды

    Matem. Mod. Kraev. Zadachi, 2 (2010),  163–167
  22. Теплообмен в плоском канале с учётом диссипации энергии при переменной вязкости среды как функции от температуры

    Matem. Mod. Kraev. Zadachi, 2 (2010),  148–153
  23. About one Method of Obtaining of the Exact Analytical Decision of the Hyperbolic Equation of Heat Conductivity on the Basis of Use of Orthogonal Methods

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  159–169
  24. Reception of Analytical Decisions Nonlinear Problems Of heat Conductivity on the Basis of Introduction Additional Boundary Conditions

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010),  162–170
  25. Построение аналитических решений уравнений динамического и теплового пограничных слоев

    Matem. Mod. Kraev. Zadachi, 2 (2009),  187–191
  26. Construction of the Approximated Analytical Solutions for Nonlinear Ordinary Differential Equations Based on Application of Additional Boundary Conditions

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(18) (2009),  122–132


© Steklov Math. Inst. of RAS, 2026