RUS  ENG
Full version
PEOPLE

Kumykova Svetlana Kanshubievna

Publications in Math-Net.Ru

  1. Nonlocal problem for degenerating hyperbolic equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7,  50–56
  2. The problem with operators of fractional differentiation in boundary condition for mixed-type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  43–49
  3. On the solvability of nonlocal problem for a hyperbolic equation of the second kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9,  51–58
  4. An internal boundary value problem with the Riemann–Liouville operator for the mixed type equation of the third order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016),  43–53
  5. Boundary-value problem with Saigo operators for mixed type equation of the third order with multiple characteristics

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7,  49–57
  6. Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 4,  60–64
  7. Nonlocal problem with fractional derivatives for mixed type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  79–85
  8. On a class of nonlocal problems for hyperbolic equations with degeneration of type and order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  22–32
  9. A Boundary-value Problem with Shift for a Hyperbolic Equation Degenerate in the Interior of a Region

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014),  37–47
  10. A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8,  57–65
  11. On the problem with generalized operators of fractional differentiation for mixed type equation with two degeneracy lines

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  150–158
  12. A problem with generalized fractional integro-differentiation operator of an arbitrary order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 12,  59–71
  13. Problem with shift for the third-order equation with discontinuous coefficients

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012),  17–25
  14. On a problem with generalized operators of fractional differentiation for a degenerated inside a domain hyperbolic equation

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 9(100),  52–60
  15. Nonlocal problem for a equation of mixed type of third order with generalized operators of fractional integro-differentiation of arbitrary order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011),  25–36
  16. Nonlocal boundary value problem for a Lykov's type system of first-order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011),  140–150
  17. A nonlocal problem for the Bitsadze–Lykov equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  28–35
  18. Inside boundary value problem for mixed type equation of the third order with multiple characteristics

    News of the Kabardin-Balkar scientific center of RAS, 2010, no. 5,  5–14
  19. Задача со смещением для уравнения смешанного типа, порядок которого вырождается вдоль линии изменения типа

    Matem. Mod. Kraev. Zadachi, 3 (2010),  147–149
  20. Внутренне-краевая задача для смешанного гиперболо-параболического уравнения второго порядка

    Matem. Mod. Kraev. Zadachi, 3 (2010),  135–138
  21. Задача с дробными производными в краевом условии для смешанного уравнения третьего порядка

    Matem. Mod. Kraev. Zadachi, 3 (2007),  117–120
  22. On some boundary value problems with a shift for mixed third order equation with multiple characteristics

    Matem. Mod. Kraev. Zadachi, 3 (2004),  91–94
  23. On problems of the type of the Bitsadze-Samarsky problem for mixed equations with perpendicular lines of degeneracy

    News of the Kabardin-Balkar scientific center of RAS, 2000, no. 1,  35–40
  24. On some boundary value problems with displacement for third order equations

    News of the Kabardin-Balkar scientific center of RAS, 1998, no. 1,  54–59
  25. A problem with nonlocal conditions on characteristics for a hyperbolic equation that degenerates inside the domain

    Differ. Uravn., 17:1 (1981),  81–90
  26. A boundary value problem with shift for a hyperbolic equation that is degenerate inside the domain

    Differ. Uravn., 16:1 (1980),  93–104
  27. A boundary value problem for a degenerate hyperbolic equation in a characteristic crescent

    Differ. Uravn., 15:1 (1979),  79–91
  28. A boundary value problem for a hyperbolic equation that degenerates inside the domain

    Differ. Uravn., 14:1 (1978),  50–65
  29. A certain boundary value problem with shift for the equation $\operatorname{sign}y|y|^mu_{xx}+y_{yy}=0$

    Differ. Uravn., 12:1 (1976),  79–88
  30. A certain problem with nonlocal boundary conditions on the characteristics for an equation of mixed type

    Differ. Uravn., 10:1 (1974),  78–88
  31. Certain boundary value problems with a shift for the Lavrent'ev–Bicadze equation

    Differ. Uravn., 9:1 (1973),  106–114
  32. On the question of the integration in $K'$ of differential equations with a generalized Čebyšev operator

    Differ. Uravn., 8:11 (1972),  2080–2081


© Steklov Math. Inst. of RAS, 2026