|
|
Publications in Math-Net.Ru
-
New Bellman induction and a weak version of BMO
Zap. Nauchn. Sem. POMI, 537 (2024), 64–93
-
Dynamics of metrics in measure spaces and scaling entropy
Uspekhi Mat. Nauk, 78:3(471) (2023), 53–114
-
Some extremal problems for martingale transforms. I
Zap. Nauchn. Sem. POMI, 527 (2023), 5–53
-
On locally concave functions on simplest nonconvex domain
Zap. Nauchn. Sem. POMI, 512 (2022), 40–87
-
Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph
Funktsional. Anal. i Prilozhen., 52:4 (2018), 23–37
-
On a universal Borel adic space
Zap. Nauchn. Sem. POMI, 468 (2018), 24–38
-
Universal adic approximation, invariant measures and scaled entropy
Izv. RAN. Ser. Mat., 81:4 (2017), 68–107
-
Интегрирование виртуально непрерывных функций по бистохастическим мерам и формула следа ядерных операторов
Algebra i Analiz, 27:3 (2015), 66–74
-
Bellman vs Beurling: sharp estimates of uniform convexity for $L^p$ spaces
Algebra i Analiz, 27:2 (2015), 218–231
-
On the subadditivity of a scaling entropy sequence
Zap. Nauchn. Sem. POMI, 436 (2015), 167–173
-
On the possible growth rate of a scaling entropy sequence
Zap. Nauchn. Sem. POMI, 436 (2015), 136–166
-
Scaling entropy sequence: invariance and examples
Zap. Nauchn. Sem. POMI, 432 (2015), 128–161
-
On a Scaling Entropy Sequence of a Dynamical System
Funktsional. Anal. i Prilozhen., 48:4 (2014), 70–74
-
Virtual continuity of measurable functions and its applications
Uspekhi Mat. Nauk, 69:6(420) (2014), 81–114
-
Virtual Continuity of Measurable Functions of Several Variables and Embedding Theorems
Funktsional. Anal. i Prilozhen., 47:3 (2013), 1–11
-
Forms of higher degree over certain fields
Zap. Nauchn. Sem. POMI, 394 (2011), 209–217
-
Correction of metrics
Zap. Nauchn. Sem. POMI, 390 (2011), 201–209
-
Canonical embeddings of compact metric spaces
Zap. Nauchn. Sem. POMI, 378 (2010), 40–46
-
On the coincidence of the canonical embeddings of a metric space into a Banach space
Zap. Nauchn. Sem. POMI, 360 (2008), 153–161
© , 2026