RUS  ENG
Full version
PEOPLE

Rutsky Dmitry Vladimirovich

Publications in Math-Net.Ru

  1. Weak factorization of Paley–Wiener spaces

    Zap. Nauchn. Sem. POMI, 545 (2025),  168–178
  2. Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples

    Zap. Nauchn. Sem. POMI, 527 (2023),  155–182
  3. Description of weak-type BMO-regularity

    Zap. Nauchn. Sem. POMI, 512 (2022),  173–190
  4. Weighted weak-type $\mathrm{BMO}$-regularity

    Zap. Nauchn. Sem. POMI, 503 (2021),  97–112
  5. Real interpolation of Hardy-type spaces: an announcement with some remarks

    Zap. Nauchn. Sem. POMI, 480 (2019),  170–190
  6. Vector-valued boundedness of harmonic analysis operators

    Algebra i Analiz, 28:6 (2016),  91–117
  7. $\mathrm A_1$-regularity and boundedness of Riesz transforms in Banach lattices of measurable functions

    Zap. Nauchn. Sem. POMI, 447 (2016),  113–122
  8. Remarks on $\mathrm A_p$-regular lattices of measurable functions

    Algebra i Analiz, 27:5 (2015),  153–169
  9. Weighted Calderón–Zygmund decomposition with some applications to interpolation

    Zap. Nauchn. Sem. POMI, 424 (2014),  186–200
  10. On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity

    Zap. Nauchn. Sem. POMI, 416 (2013),  175–187
  11. Some remarks to the corona theorem

    Algebra i Analiz, 24:2 (2012),  171–191
  12. $\mathrm{BMO}$-regularity for lattices of measurable functions on spaces of homogeneous type

    Algebra i Analiz, 23:2 (2011),  248–295
  13. Remarks on BMO-regularity and AK-stability

    Zap. Nauchn. Sem. POMI, 376 (2010),  116–166
  14. Two remarks on the relationship between BMO-regularity and analytic stability of interpolation for lattices of measurable functions

    Zap. Nauchn. Sem. POMI, 366 (2009),  102–115

  15. Correction to the paper "On the relationship between $\mathrm{AK}$-stability and BMO-regularity"

    Zap. Nauchn. Sem. POMI, 424 (2014),  201–209


© Steklov Math. Inst. of RAS, 2026