RUS  ENG
Full version
PEOPLE

Markin Alexey Alexandrovich

Publications in Math-Net.Ru

  1. Il’yushin's particular postulate and nonlinear relations for anisotropic bodies

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 1,  95–104
  2. Conditions for the reversible deformation of planar bodies weakened by a cut

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94,  136–148
  3. The effect of initial stresses on sound wave propagation in hypoelastic anisotropic materials

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 91,  113–124
  4. Prefracture model of a layer with a hole based on the interaction arc concept

    Chebyshevskii Sb., 24:5 (2023),  256–265
  5. Effect of the type of a flat problem for a thin elastoplastic adhesive layer on $J$-integral value

    Prikl. Mekh. Tekh. Fiz., 64:6 (2023),  168–175
  6. Effect of a linear parameter on the brittle fracture of an elastic layer with a circular hole

    Prikl. Mekh. Tekh. Fiz., 64:5 (2023),  159–165
  7. On determining the elastic limit of an adhesive layer in the opening mode of loading

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 83,  59–73
  8. Finite deformations of a toroidal shell

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 71,  106–120
  9. Local unloading element process in finite element continuum

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 69,  86–96
  10. Interaction of bonded plates in a uniform temperature field

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 186 (2020),  32–37
  11. On one approach to the assessing of the adhesive layer strength in a layered composite

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 64,  63–77
  12. Testing of defining relations of nonlinear theory of elasticity in an axial strain of a hollow cylinder

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 63,  102–114
  13. Finite deformation of a panel in the cases of ideal plasticity and superplasticity

    Prikl. Mekh. Tekh. Fiz., 60:6 (2019),  192–201
  14. Determining the stress-strain state of elastic-plastic solids with a lateral crack-like defect with the use of a model with a linear size

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  143–154
  15. Model of a mode II shear crack

    Prikl. Mekh. Tekh. Fiz., 56:4 (2015),  182–192
  16. Finding the elastic strain limit at the tip region of a physical cut with arbitrarily loaded faces

    Prikl. Mekh. Tekh. Fiz., 53:5 (2012),  174–183
  17. Finite deformation of an ideal rigid-plastic membrane

    Prikl. Mekh. Tekh. Fiz., 52:2 (2011),  128–133
  18. Variant of the description of the intense-deformed state of the planewith the semi-infinite flaw on the basis of the concept of the stratum of interaction at the normal separation

    Izv. Saratov Univ. Math. Mech. Inform., 10:2 (2010),  50–58
  19. Propagation of thin plastic zones in the vicinity of a normally separating crack

    Prikl. Mekh. Tekh. Fiz., 50:5 (2009),  206–217
  20. One formulation of the problem of elastoplastic separation

    Prikl. Mekh. Tekh. Fiz., 50:4 (2009),  187–195
  21. Discrete-continuum model of symmetric separation of a material

    Prikl. Mekh. Tekh. Fiz., 50:1 (2009),  134–140
  22. Solution of one problem of fracture mechanics

    Prikl. Mekh. Tekh. Fiz., 48:4 (2007),  121–127
  23. Моделирование термомеханических процессов в анизотропных упругих телах

    Matem. Mod. Kraev. Zadachi, 1 (2005),  192–194
  24. Соотношения нелинейной термоупругости в вариационной форме

    Matem. Mod. Kraev. Zadachi, 1 (2004),  139–142
  25. Constitutive relations of nonlinear thermoelasticity of anisotropic bodies

    Prikl. Mekh. Tekh. Fiz., 44:1 (2003),  170–175
  26. Thermomechanics of elastoplastic and superplastic deformation of metals

    Prikl. Mekh. Tekh. Fiz., 40:5 (1999),  164–172


© Steklov Math. Inst. of RAS, 2026