RUS  ENG
Full version
PEOPLE

Platonov Alexey Viktorovich

Publications in Math-Net.Ru

  1. Stability analysis of non-stationary mechanical systems with discontinuous right-hand sides

    Avtomat. i Telemekh., 2025, no. 3,  20–37
  2. Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 6,  68–79
  3. Analysis of the dynamics of solutions for hybrid difference Lotka—Volterra systems

    Sib. Zh. Ind. Mat., 27:4 (2024),  99–112
  4. Stability analysis for the Lienard equation with discontinuous coefficients

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021),  226–240
  5. Stability analysis of nonstationary switched systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 2,  63–73
  6. Polarization conversion in MoS$_2$ flakes

    Fizika i Tekhnika Poluprovodnikov, 54:11 (2020),  1260
  7. On the asymptotic stability of solutions of difference switched systems

    Avtomat. i Telemekh., 2018, no. 5,  46–58
  8. Nonreciprocal optical and magnetooptical effects in semiconductor quantum wells

    Fizika Tverdogo Tela, 60:11 (2018),  2229–2235
  9. Estimate of the attraction domain for a class of nonlinear switched systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 8,  3–16
  10. On stability of solutions for a class of nonlinear difference systems with switching

    Avtomat. i Telemekh., 2016, no. 5,  37–49
  11. Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 1,  107–119
  12. On the asymptotic stability of solutions of hybrid multivariable systems

    Avtomat. i Telemekh., 2014, no. 5,  18–30
  13. On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 1,  5–16
  14. On asymptotic stability of mechanical systems with nonstationary leading parameter under dissipative forces

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 2,  97–109
  15. On the preservation of instability of mechanical systems under the evolution of dissipative forces

    Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011),  3–19
  16. Stability Analysis Based on Nonlinear Inhomogeneous Approximation

    Mat. Zametki, 90:6 (2011),  803–820
  17. Об устойчивости решений гибридных однородных систем

    Matem. Mod. Kraev. Zadachi, 3 (2010),  10–13
  18. On the Stability of Hybrid Homogeneous Systems

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  24–32
  19. On stability and dissipativity of some classes of complex systems

    Avtomat. i Telemekh., 2009, no. 8,  3–18
  20. On absolute stability of one class of nonlinear switched systems

    Avtomat. i Telemekh., 2008, no. 7,  3–18
  21. Investigation of the stability of solutions of nonlinear systems with unbounded perturbations

    Differ. Uravn., 35:12 (1999),  1707–1708


© Steklov Math. Inst. of RAS, 2026