RUS  ENG
Full version
PEOPLE

Netrusov Yurii Vladimirovich

Publications in Math-Net.Ru

  1. Boundary values of functions from Sobolev spaces in some non-Lipschitzian domains

    Algebra i Analiz, 11:1 (1999),  141–170
  2. Spectral synthesis in the Sobolev space associated with integral metric

    Zap. Nauchn. Sem. POMI, 217 (1994),  92–111
  3. An intrinsic description of functions defined on a plane convex domain and having a prescribed order approximation by algebraic polynomials

    Zap. Nauchn. Sem. POMI, 215 (1994),  217–225
  4. Free interpolation in some spaces of smooth functions

    Zap. Nauchn. Sem. POMI, 206 (1993),  107–118
  5. Uniform-metric nonlinear approximation of functions from Besov–Lorentz spaces

    Zap. Nauchn. Sem. POMI, 204 (1993),  61–81
  6. Interpolation (the real method) of spaces of smooth functions with the space of bounded functions

    Dokl. Akad. Nauk, 325:6 (1992),  1120–1123
  7. Spectral synthesis in spaces of smooth functions

    Dokl. Akad. Nauk, 325:5 (1992),  923–925
  8. Estimates of capacities associated with Besov spaces

    Zap. Nauchn. Sem. POMI, 201 (1992),  124–156
  9. Theorems about traces and multipliers for functions from Lizorkin–Triebel spaces

    Zap. Nauchn. Sem. POMI, 200 (1992),  132–138
  10. Metric estimates of capacities of sets in Besov spaces

    Trudy Mat. Inst. Steklov., 190 (1989),  159–185
  11. Sets of irregularity of functions from spaces of Besov and Lizorkin–Triebel type

    Trudy Mat. Inst. Steklov., 187 (1989),  162–177
  12. Embedding theorems for traces of Besov and Lizorkin–Triebel spaces

    Dokl. Akad. Nauk SSSR, 298:6 (1988),  1326–1330
  13. Imbedding theorems for the Lizorkin–Triebel spaces

    Zap. Nauchn. Sem. LOMI, 159 (1987),  103–112
  14. Imbedding theorems for the spaces $H_p^{\omega,k}$ and $H_p^{s,\omega,k}$

    Zap. Nauchn. Sem. LOMI, 159 (1987),  83–102
  15. Theorems of imbedding Besov spaces into ideal spaces

    Zap. Nauchn. Sem. LOMI, 159 (1987),  69–82
  16. Some imbedding theorems for spaces of Besov–Morrey type

    Zap. Nauchn. Sem. LOMI, 139 (1984),  139–147


© Steklov Math. Inst. of RAS, 2026