RUS  ENG
Full version
PEOPLE

Podvigin Ivan Viktorovich

Publications in Math-Net.Ru

  1. Convergence rates in the ergodic theorem for unitary actions of compactly generated abelian groups

    Sibirsk. Mat. Zh., 66:3 (2025),  438–449
  2. Correlations and rates of convergence in general ergodic theorems

    Teor. Veroyatnost. i Primenen., 70:4 (2025),  672–689
  3. On convergence rate in ergodic theorem for some statistically averaging sequences in $\mathbb{R}$

    Ufimsk. Mat. Zh., 17:2 (2025),  58–70
  4. A criterion for the power-law rate of convergence of ergodic means for unitary actions of $\mathbb{Z}^d$ and $\mathbb{R}^d$

    Algebra i Analiz, 36:4 (2024),  148–164
  5. On convergence rates in the Birkhoff Ergodic Theorem

    Sibirsk. Mat. Zh., 65:5 (2024),  991–1010
  6. A spectral criterion for power-law convergence rate in the ergodic theorem for ${\Bbb Z}^d$ and ${\Bbb R}^d$ actions

    Sibirsk. Mat. Zh., 65:1 (2024),  92–114
  7. On the rate of convergence of ergodic averages for functions of Gordin space

    Vladikavkaz. Mat. Zh., 26:2 (2024),  95–102
  8. On the power rate of convergence in Wiener's ergodic theorem

    Algebra i Analiz, 35:6 (2023),  159–168
  9. Uniform Convergence on Subspaces in von Neumann Ergodic Theorem with Discrete Time

    Mat. Zametki, 113:5 (2023),  713–730
  10. Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  183–206
  11. Exponent of Convergence of a Sequence of Ergodic Averages

    Mat. Zametki, 112:2 (2022),  251–262
  12. On possible estimates of the rate of pointwise convergence in the Birkhoff ergodic theorem

    Sibirsk. Mat. Zh., 63:2 (2022),  379–390
  13. Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time

    Mat. Tr., 24:2 (2021),  65–80
  14. Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions

    Sib. Èlektron. Mat. Izv., 17 (2020),  626–636
  15. The maximum pointwise rate of convergence in Birkhoff's ergodic theorem

    Zap. Nauchn. Sem. POMI, 498 (2020),  18–25
  16. Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem

    Mat. Zametki, 106:1 (2019),  40–52
  17. On the convergence of the Luzin integral and its analogues

    Sib. Èlektron. Mat. Izv., 16 (2019),  85–95
  18. Estimates for correlation in dynamical systems: from Hölder continuous functions to general observables

    Mat. Tr., 20:2 (2017),  90–119
  19. Large deviations of the ergodic averages: from Hölder continuity to continuity almost everywhere

    Mat. Tr., 20:1 (2017),  97–120
  20. Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems

    Tr. Mosk. Mat. Obs., 77:1 (2016),  1–66
  21. On the rate of convergence in the individual ergodic theorem for the action of a semigroup

    Mat. Tr., 18:2 (2015),  93–111
  22. On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem

    Mat. Zametki, 95:4 (2014),  638–640
  23. Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem

    Mat. Zametki, 94:4 (2013),  569–577
  24. Diagonal martingale ergodic sequences

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012),  103–107
  25. A martingale ergodic theorem

    Sibirsk. Mat. Zh., 51:6 (2010),  1422–1429
  26. Martingale ergodic and ergodic martingale processes with continuous time

    Mat. Sb., 200:5 (2009),  55–70


© Steklov Math. Inst. of RAS, 2026