RUS  ENG
Full version
PEOPLE

Smirnov Aleksandr Pavlovich

Publications in Math-Net.Ru

  1. Quality factor of micro-ring resonators: calculation method and experiment

    Zhurnal Tekhnicheskoi Fiziki, 95:6 (2025),  1183–1190
  2. Adaptive time-stepping for aggregation-shattering kinetics

    Num. Meth. Prog., 25:3 (2024),  347–356
  3. Aggregation kinetics in sedimentation: Effect of diffusion of particles

    Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023),  629–638
  4. Common structure of reduced bases for aggregation kinetics problems of varying dimensionality

    Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022),  553–563
  5. Method for reduced basis discovery in nonstationary problems

    Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  31–34
  6. Dynamics of a Q-switched bismuth-doped fibre laser: simulation and comparison with experiment

    Kvantovaya Elektronika, 51:4 (2021),  299–305
  7. Simultaneous mode locking and Q-switching in a solid-state laser with a travelling-wave acousto-optic modulator and retroreflector

    Kvantovaya Elektronika, 49:2 (2019),  119–123
  8. Tensor decompositions for solving the equations of mathematical models of aggregation with multiple collisions of particles

    Num. Meth. Prog., 19:4 (2018),  390–404
  9. An efficient finite-difference method for solving Smoluchowski-type kinetic equations of aggregation with three-body collisions

    Num. Meth. Prog., 19:3 (2018),  261–269
  10. QML-generation dynamics of a solid-state laser with an acousto-optic travelling wave modulator

    Kvantovaya Elektronika, 47:11 (2017),  1000–1004
  11. Performance characteristics and output power stability of a multichannel fibre laser

    Kvantovaya Elektronika, 46:9 (2016),  795–800
  12. A fast numerical method for solving the Smoluchowski-type kinetic equations of aggregation and fragmentation processes

    Num. Meth. Prog., 15:1 (2014),  1–8
  13. Numerical modeling of Maxwells equations with dispersive materials

    Mat. Model., 25:12 (2013),  19–32
  14. Application of high performance computing systems to simulate the Farley-Buneman instability

    Num. Meth. Prog., 11:2 (2010),  176–183
  15. A numerical-analytic method for solving Landau's two-dimensional kinetic equation in self-similar variables

    Zh. Vychisl. Mat. Mat. Fiz., 34:6 (1994),  898–908
  16. On the existence of a solitary traveling vortex in a magnetized plasma in the presence of an inhomogeneous electrical field

    Differ. Uravn., 27:7 (1991),  1268–1270
  17. Existence of solitary vortices in a zonal flow

    Differ. Uravn., 26:7 (1990),  1265–1271
  18. On positive infinitely smooth vortex in zonal flow

    Mat. Model., 2:12 (1990),  116–121
  19. Numerical simulation of the interaction between drift solitons and anticyclones

    Dokl. Akad. Nauk SSSR, 277:1 (1984),  88–90


© Steklov Math. Inst. of RAS, 2026