RUS  ENG
Full version
PEOPLE

Serdyukova Svetlana Ivanovna

Publications in Math-Net.Ru

  1. Numerical method for estimating the growth rate of the rounding error in uniform metric

    Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023),  1438–1445
  2. Simulation of dynamic processes in long Josephson junctions. The problem on calculating the current–voltage characteristics. Numerical method for estimating the round-off error growth rate

    Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022),  3–11
  3. Simulation of dynamical processes in long Josephson junctions: computation of current-voltage characteristics and round error growth estimation for a second-order difference scheme

    Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020),  159–166
  4. Numerical-analytical method for computing the current-voltage characteristics for a stack of Josephson junctions

    Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  2093–2100
  5. Breather collapse for a dispersive effective equation: asymptotics on the well-posedness boundary

    Zh. Vychisl. Mat. Mat. Fiz., 50:7 (2010),  1276–1284
  6. Calculating the coefficients of a discrete elliptic equation from spectral data

    Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  867–881
  7. Calculation of defects in two-dimensional tunnel arrays

    Zh. Vychisl. Mat. Mat. Fiz., 42:1 (2002),  3–9
  8. An inverse problem for a discrete Dirac system

    Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997),  979–987
  9. A CAS REDUCE investigation of the stability of Rusanov's scheme with conditions at domain joints

    Zh. Vychisl. Mat. Mat. Fiz., 36:8 (1996),  90–100
  10. The construction of explicit $C$-stable schemes of maximum odd order of accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 34:6 (1994),  943–954
  11. Numerical investigation of the behaviour of solutions of the sine-Gordon equation with a singularity for large $t$

    Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993),  417–427
  12. Necessary and sufficient conditions for stability in $\mathbf{C}$ of linear difference boundary value problems of general form

    Dokl. Akad. Nauk SSSR, 319:6 (1991),  1328–1332
  13. The quasi-Jordan form of analytic matrices that form a bounded semigroup

    Dokl. Akad. Nauk SSSR, 311:4 (1990),  801–806
  14. One-electron solitons in two-dimensional tunnelling structures

    Zh. Vychisl. Mat. Mat. Fiz., 30:6 (1990),  883–893
  15. An estimate of the “shade” of additional boundary conditions for systems of difference equations with oblique characteristics of constant sign

    Zh. Vychisl. Mat. Mat. Fiz., 29:12 (1989),  1811–1821
  16. Discontinuity diffusion in the forward calculation of a singular hyperbolic equation

    Dokl. Akad. Nauk SSSR, 295:2 (1987),  297–302
  17. Investigation of the stability of a difference boundary value problem by an analytic computation system

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 10,  55–61
  18. Asymptotic estimates of the Green function and the “difference step” in the case of Lipschitz-continuous coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 24:7 (1984),  1016–1029
  19. Asymptotic properties of difference schemes of maximum odd order of accuracy

    Mat. Zametki, 32:4 (1982),  517–528
  20. Numerical modeling of the motion of a dense electron cloud in an inhomogeneous medium

    Zh. Vychisl. Mat. Mat. Fiz., 22:3 (1982),  685–689
  21. Investigation of the stability of a difference boundary value problem approximating a system of acoustics equations with account taken of heat conductivity

    Zh. Vychisl. Mat. Mat. Fiz., 21:6 (1981),  1451–1458
  22. On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric

    Dokl. Akad. Nauk SSSR, 255:6 (1980),  1325–1328
  23. Asymptotic stability of a difference scheme with boundary conditions depending on the spacing of the grid

    Mat. Zametki, 27:3 (1980),  481–492
  24. The numerical solution of a model selfconsistent electrodynamic problem

    Zh. Vychisl. Mat. Mat. Fiz., 19:5 (1979),  1228–1236
  25. Asymptotic stability of a difference boundary value problem

    Zh. Vychisl. Mat. Mat. Fiz., 18:3 (1978),  653–659
  26. The stability of boundary value problems for systems of difference equations of varying structure

    Zh. Vychisl. Mat. Mat. Fiz., 17:3 (1977),  690–695
  27. Numerical solution of maxwell's equations in an inhomogeneous region with a moving discontinuity on the right side

    Zh. Vychisl. Mat. Mat. Fiz., 16:3 (1976),  697–704
  28. The stability of difference boundary value problems with oblique characteristics of constant sign

    Zh. Vychisl. Mat. Mat. Fiz., 15:5 (1975),  1333–1339
  29. On the stability of difference boundary-value problems with two boundaries

    Dokl. Akad. Nauk SSSR, 215:2 (1974),  282–285
  30. An example of a difference boundary value problem with instability of logarithmic type

    Zh. Vychisl. Mat. Mat. Fiz., 14:1 (1974),  250–253
  31. A necessary and sufficient condition for the stability of a certain class of difference boundary value problems

    Dokl. Akad. Nauk SSSR, 208:1 (1973),  52–55
  32. On stability of the first boundary value problem involving points of the spectrum on the unit circle

    Dokl. Akad. Nauk SSSR, 200:1 (1971),  39–42
  33. The oscillations that arise in numerical calculations of the discontinuous solutions of differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971),  411–424
  34. The unconditional uniform stability of a certain difference scheme for the equation $u_t+u_x=0$

    Zh. Vychisl. Mat. Mat. Fiz., 10:1 (1970),  88–98
  35. A necessary and sufficient condition for stability in the uniform metric of systems of difference equations

    Dokl. Akad. Nauk SSSR, 173:3 (1967),  526–528
  36. On the stability in a uniform metric of sets of difference equations

    Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967),  497–509
  37. Uniform stability of a six-point scheme of higher order accuracy for the heat equation

    Zh. Vychisl. Mat. Mat. Fiz., 7:1 (1967),  214–218
  38. Stability in $C$ of linear difference schemes with constant real coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 6:3 (1966),  477–486
  39. Uniform stability with respect to the initial data of a six-point symmetric scheme for the heat equation

    Zh. Vychisl. Mat. Mat. Fiz., 4:supplement to № 4 (1964),  212–216
  40. An analysis of the stability in $C$ of explicit difference schemes with constant real coefficients, stable in $l_2$

    Zh. Vychisl. Mat. Mat. Fiz., 3:2 (1963),  365–370


© Steklov Math. Inst. of RAS, 2026