|
|
Publications in Math-Net.Ru
-
Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation
Adyghe Int. Sci. J., 24:2 (2024), 16–26
-
The first boundary value problem for a model equation of parabolic-hyperbolic type of the third order
Vestnik KRAUNC. Fiz.-Mat. Nauki, 48:3 (2024), 20–32
-
Tricomi problem analogue for a second order mixed type equation
Vladikavkaz. Mat. Zh., 26:4 (2024), 44–54
-
Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation
Adyghe Int. Sci. J., 23:1 (2023), 11–19
-
Nonlocal problems with displacement for matching two second order hyperbolic equations
Ufimsk. Mat. Zh., 15:2 (2023), 9–19
-
Local boundary value problems for a model equation of the third order
of hyperbolic type
News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2022, no. 5, 11–18
-
Boundary-value problem with shift for a third-order parabolic-hyperbolic equation
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198 (2021), 33–40
-
Internal boundary value problems with displacement for the mixed-wave equation
Vestnik KRAUNC. Fiz.-Mat. Nauki, 36:3 (2021), 8–14
-
Boundary value problem with displacement for a third-order parabolic-hyperbolic equation
Vladikavkaz. Mat. Zh., 23:2 (2021), 5–18
-
The problem with shift for a degenerate hyperbolic equation of the first kind
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021), 21–34
-
Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation
Reports of AIAS, 20:3 (2020), 6–13
-
On a boundary value problem for a third-order parabolic-hyperbolic type equation
with a displacement boundary condition in its hyperbolicity domain
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 211–225
-
On a priori estimates of solutions of the Tricomi problem for a certain mixed-type second-order equation
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019), 14–20
-
On a boundary value problem of the type of the tricomi problem for a mixed second-order parabolic-hyperbolic equation with three displacements in the hyperbolic part of the domain
Applied Mathematics & Physics, 51:1 (2019), 5–14
-
Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018), 14–24
-
A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 3(23), 19–26
-
Dirichlet boundary value problem for a third order parabolic-hyperbolic equation with degenerating type and order in the hyperbolicity domain
Ufimsk. Mat. Zh., 9:2 (2017), 25–39
-
Finite-difference method for solving Tricomi problem for the Lavrent'ev–Bitsadze equation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 221–235
-
About the a priori estimate for solution of Tricomi problem for the Lavrentiev-Bitsadze equation
Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 4-1(16), 15–20
-
The first boundary value problem for a degenerate hyperbolic equation
Vladikavkaz. Mat. Zh., 18:2 (2016), 19–30
-
The boundary value problem for equation
of the mixed type of the third order
with Gellerstedte operator in hyperbolic area
News of the Kabardin-Balkar scientific center of RAS, 2011, no. 5, 7–14
-
On the representation of solutions
of boundary value problems for nonhomogeneous
third order equation with multiple characteristics
News of the Kabardin-Balkar scientific center of RAS, 2010, no. 4, 64–69
-
Local and non-local boundary problems
for mixed third order equation with string’s
oscillation operator in hyperbolical part
News of the Kabardin-Balkar scientific center of RAS, 2008, no. 4, 65–74
-
Об одной краевой задаче для уравнения третьего порядка с кратными характеристиками в неограниченной области
Matem. Mod. Kraev. Zadachi, 3 (2008), 23–28
-
Local and nonlocal value boundary problems for a third-order mixed-type equation equipped with Tricomi operator in its hyperbolic part
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008), 21–28
-
Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками
Matem. Mod. Kraev. Zadachi, 3 (2006), 57–62
© , 2026