RUS  ENG
Full version
PEOPLE

Balkizov Zhiraslan Anatolievich

Publications in Math-Net.Ru

  1. Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation

    Adyghe Int. Sci. J., 24:2 (2024),  16–26
  2. The first boundary value problem for a model equation of parabolic-hyperbolic type of the third order

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 48:3 (2024),  20–32
  3. Tricomi problem analogue for a second order mixed type equation

    Vladikavkaz. Mat. Zh., 26:4 (2024),  44–54
  4. Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation

    Adyghe Int. Sci. J., 23:1 (2023),  11–19
  5. Nonlocal problems with displacement for matching two second order hyperbolic equations

    Ufimsk. Mat. Zh., 15:2 (2023),  9–19
  6. Local boundary value problems for a model equation of the third order of hyperbolic type

    News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2022, no. 5,  11–18
  7. Boundary-value problem with shift for a third-order parabolic-hyperbolic equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198 (2021),  33–40
  8. Internal boundary value problems with displacement for the mixed-wave equation

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 36:3 (2021),  8–14
  9. Boundary value problem with displacement for a third-order parabolic-hyperbolic equation

    Vladikavkaz. Mat. Zh., 23:2 (2021),  5–18
  10. The problem with shift for a degenerate hyperbolic equation of the first kind

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021),  21–34
  11. Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation

    Reports of AIAS, 20:3 (2020),  6–13
  12. On a boundary value problem for a third-order parabolic-hyperbolic type equation with a displacement boundary condition in its hyperbolicity domain

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020),  211–225
  13. On a priori estimates of solutions of the Tricomi problem for a certain mixed-type second-order equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019),  14–20
  14. On a boundary value problem of the type of the tricomi problem for a mixed second-order parabolic-hyperbolic equation with three displacements in the hyperbolic part of the domain

    Applied Mathematics & Physics, 51:1 (2019),  5–14
  15. Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018),  14–24
  16. A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 3(23),  19–26
  17. Dirichlet boundary value problem for a third order parabolic-hyperbolic equation with degenerating type and order in the hyperbolicity domain

    Ufimsk. Mat. Zh., 9:2 (2017),  25–39
  18. Finite-difference method for solving Tricomi problem for the Lavrent'ev–Bitsadze equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017),  221–235
  19. About the a priori estimate for solution of Tricomi problem for the Lavrentiev-Bitsadze equation

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 4-1(16),  15–20
  20. The first boundary value problem for a degenerate hyperbolic equation

    Vladikavkaz. Mat. Zh., 18:2 (2016),  19–30
  21. The boundary value problem for equation of the mixed type of the third order with Gellerstedte operator in hyperbolic area

    News of the Kabardin-Balkar scientific center of RAS, 2011, no. 5,  7–14
  22. On the representation of solutions of boundary value problems for nonhomogeneous third order equation with multiple characteristics

    News of the Kabardin-Balkar scientific center of RAS, 2010, no. 4,  64–69
  23. Local and non-local boundary problems for mixed third order equation with string’s oscillation operator in hyperbolical part

    News of the Kabardin-Balkar scientific center of RAS, 2008, no. 4,  65–74
  24. Об одной краевой задаче для уравнения третьего порядка с кратными характеристиками в неограниченной области

    Matem. Mod. Kraev. Zadachi, 3 (2008),  23–28
  25. Local and nonlocal value boundary problems for a third-order mixed-type equation equipped with Tricomi operator in its hyperbolic part

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008),  21–28
  26. Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками

    Matem. Mod. Kraev. Zadachi, 3 (2006),  57–62


© Steklov Math. Inst. of RAS, 2026