RUS  ENG
Full version
PEOPLE

Prosviryakov Eugenii Yurevich

Publications in Math-Net.Ru

  1. Numerical solution of a boundary value problem describing convective current of viscous incompressible fluid in a horizontal layer

    Meždunar. nauč.-issled. žurn., 2025, no. 10(160)S,  1–7
  2. The Inhomogeneous Couette Flow of a Micropolar Fluid

    Rus. J. Nonlin. Dyn., 21:3 (2025),  345–358
  3. Steady-state non-uniform Poiseuille shear flows with Navier boundary condition

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:4 (2025),  763–777
  4. Inhomogeneous Ekman flow

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025),  486–502
  5. Isothermal Couette–Poiseuille flow of a viscous incompressible liquid with low vertical velocity

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 17:4 (2025),  52–64
  6. Wind influence on convective flow of viscous incompressible vertically swirling fluid

    Meždunar. nauč.-issled. žurn., 2024, no. 5(143)S,  1–12
  7. Exact solution to the velocity field description for Couette–Poiseulle flows of binary liquids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024),  759–772
  8. Approximate analytical solutions of the nonlinear fractional order financial model by two efficient methods with a comparison study

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:2 (2024),  223–246
  9. An Inhomogeneous Steady-State Convection of a Vertical Vortex Fluid

    Rus. J. Nonlin. Dyn., 19:2 (2023),  167–186
  10. Inhomogeneous Couette flows for a two-layer fluid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023),  530–543
  11. An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:2 (2023),  214–240
  12. Exact Solutions to the Navier – Stokes Equations for Describing the Convective Flows of Multilayer Fluids

    Rus. J. Nonlin. Dyn., 18:3 (2022),  397–410
  13. Exact solution of the Couette–Poiseuille type for steady concentration flows

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 164:4 (2022),  285–301
  14. Inhomogeneous Poiseuille flow

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77,  68–85
  15. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect

    Bulletin of Irkutsk State University. Series Mathematics, 37 (2021),  17–30
  16. Exact solutions for steady convective layered flows with a spatial acceleration

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 7,  12–22
  17. Steady thermo-diffusive shear Couette flow of incompressible fluid. Velocity field analysis

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021),  763–775
  18. Exact solutions to the Navier–Stokes equations describing stratified fluid flows

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021),  491–507
  19. A Couette-type flow with a perfect slip condition on a solid surface

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 74,  79–94
  20. Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:3 (2021),  505–516
  21. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters

    Bulletin of Irkutsk State University. Series Mathematics, 32 (2020),  33–48
  22. Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  79–87
  23. A new class of non-helical exact solutions of the Navier–Stokes equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020),  762–768
  24. Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020),  528–541
  25. Exact solutions to generalized plane Beltrami–Trkal and Ballabh flows

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020),  319–330
  26. Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer

    Rus. J. Nonlin. Dyn., 15:3 (2019),  271–283
  27. Exact solutions for the layered three-dimensional nonstationary isobaric flows of viscous incompressible fluid

    Prikl. Mekh. Tekh. Fiz., 60:6 (2019),  65–71
  28. Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019),  764–770
  29. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019),  341–360
  30. Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer

    Nelin. Dinam., 14:1 (2018),  69–79
  31. Dynamic equilibria of a nonisothermal fluid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018),  735–749
  32. Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018),  532–548
  33. Analytic solutions of stationary complex convection describing a shear stress field of different signs

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  32–41
  34. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017),  736–751
  35. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017),  180–196
  36. Layered Bénard-Marangoni convection during heat transfer according to the Newton's law of cooling

    Computer Research and Modeling, 8:6 (2016),  927–940
  37. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer

    Nelin. Dinam., 12:2 (2016),  167–178
  38. Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016),  567–577
  39. Stokes waves in vortical fluid

    Nelin. Dinam., 10:3 (2014),  309–318
  40. Inhomogeneous Couette flow

    Nelin. Dinam., 10:2 (2014),  177–182
  41. On laminar flows of planar free convection

    Nelin. Dinam., 9:4 (2013),  651–657
  42. On one class of analytic solutions of the stationary axisymmetric convection Bénard–Marangoni viscous incompressible fluid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(32) (2013),  110–118
  43. О среде генки с разупрочнением

    Matem. Mod. Kraev. Zadachi, 1 (2009),  210–213
  44. Separatrix in rigid tension-torsion loading problem

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009),  248–252
  45. Tension with Torsion. Message 3. Iterative Method of Equilibrium parameters Calculation and Stability of Deformation Process in Mechanical System at Mixed Loading Conditions

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(18) (2009),  66–74
  46. Критические точки потенциальной функции системы для кручения и растяжения при жестком нагружении

    Matem. Mod. Kraev. Zadachi, 1 (2008),  309–315
  47. Об определяющих соотношениях растяжения с кручением в соленоидальном силовом поле

    Matem. Mod. Kraev. Zadachi, 1 (2008),  244–246
  48. Tension with torsion. Part 2. Deformation process stability of a sample in a mechanical system. Rigid and soft loadings

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008),  77–86
  49. Tension with torsion. Part 1. Material properties

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(16) (2008),  36–44
  50. Итерационная процедура в задаче о кручении с растяжением образца из упругопластического материала

    Matem. Mod. Kraev. Zadachi, 1 (2007),  197–202
  51. On equilibrium stability of gradient type automatic control systems

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007),  173–176


© Steklov Math. Inst. of RAS, 2026