RUS  ENG
Full version
PEOPLE

Tsepelev Igor' Anatol'evich

Publications in Math-Net.Ru

  1. Reconstruction of lava rheology in a thin-layer model of viscous flow

    Russian Journal of Cybernetics, 6:4 (2025),  121–126
  2. On the correctness of one extreme problem related to inverse coefficient problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  170–179
  3. Application of hybrid computers to simulate the lava flow

    Russian Journal of Cybernetics, 5:4 (2024),  103–109
  4. Assimilation of Boundary Data for Reconstructing the Absorption Coefficient in a Model of Stationary Reaction–Convection–Diffusion

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  87–103
  5. Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  143–157
  6. Numerical simulation of lava flows in models of isothermal viscous multiphase incompressible fluid

    Meždunar. nauč.-issled. žurn., 2021, no. 12(114),  12–18
  7. Gravitational flow of a two-phase viscous incompressible liquid

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  61–73
  8. Reconstruction of the inlet viscous fluid flow by velocity measurements on any observable part of the free moving surface

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:4 (2019),  56–61
  9. Recovery of flow parameters of viscous heat-conducting fluid by some changes at its surface

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:1 (2018),  27–36
  10. Numerical simulation of viscous fluid flow based on thermal measurements at its surface

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016),  17–25
  11. On the development of analytical and numerical solution methods for problems of continuum mechanics

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  203–215
  12. Approximation of nonsmooth solutions of a retrospective problem for an advection-diffusion model

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  281–290
  13. Direct and inverse problems of high-viscosity fluid dynamics

    Avtomat. i Telemekh., 2007, no. 5,  84–96
  14. Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method

    Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006),  2277–2288
  15. Solution of a retrospective inverse problem for a nonlinear evolutionary model

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003),  73–86
  16. Three-dimensional numerical modeling of the inverse problem of thermal convection

    Zh. Vychisl. Mat. Mat. Fiz., 43:4 (2003),  614–626
  17. Numerical simulation of three-dimensional viscous flows with gravitational and thermal effects

    Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1399–1415
  18. Dynamic reconstruction of the set of parameters in the Goursat–Darboux boundary value problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  319–327
  19. Numerical realization of liydrodyiiamic 3D-model of the formation of sedimentary basins

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  143–173
  20. Implementation of a three-dimensional hydrodynamic model for evolution of sedimentary basins

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1190–1203
  21. Upper and lower bounds on accuracy in the problem of the dynamic determination of parameters

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  227–238
  22. On dynamical solution of inverse reconstruction problem in Goursat–Darboux system

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  88–103
  23. On dynamical modelling of parameters of some thermal processes

    Mat. Model., 3:8 (1991),  72–81


© Steklov Math. Inst. of RAS, 2026