|
|
Publications in Math-Net.Ru
-
The "attack-defense" model on networks with the initial residuals of the parties
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2021, no. 2, 68–81
-
Minimax problem of suppressing a communication network
Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021), 1390–1400
-
The “attack-defense” game with restrictions on the intake capacity of points
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 3, 78–92
-
To the problem of distribution of different types of defensive means by the criterion of the difference in losses
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2019, no. 2, 26–41
-
Multilayered attack–defense model on networks
Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1448–1456
-
Unhomogeneous «attack-defense» game on the basis of the generalized equalization principle
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 1, 89–106
-
An attack-defense model with inhomogeneous resources of the opponents
Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018), 42–51
-
A multi-step generalization of the "attack-defense" model
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 2, 89–100
-
Multi-level expansion of the model "attack-defense"
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 1, 57–69
-
Direct extension of Gordon formula in case of irregular cash flow
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2011, no. 22, 127–134
-
The stochastic method of generalized Clarke gradients for solving two-stage problems of stochastic programming with coupled variables
Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993), 453–455
-
On the investigation of the practical convergence of an algorithm of global optimization
Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993), 309–313
-
Convergence of Clarke's generalized gradient method in problems of minimization of Lipschitz functions
Zh. Vychisl. Mat. Mat. Fiz., 32:2 (1992), 208–216
-
On the approximation of criteria in problems on the dynamic
synthesis of manipulator robots
Dokl. Akad. Nauk SSSR, 320:1 (1991), 58–61
-
Approximation of preference relations on a set of dynamical
systems
Dokl. Akad. Nauk SSSR, 319:5 (1991), 1091–1094
-
Regularization of kernels of binary relations defined by
inequalities
Dokl. Akad. Nauk SSSR, 316:5 (1991), 1068–1071
-
A variant of the maximum principle for optimal processes with vector criteria
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9, 38–43
-
On the practical convergence of subgradient methods of the manufacturing systems synhtesis
Mat. Model., 3:3 (1991), 130–136
-
On the one test to the minimax synthesis of the technical systems
Mat. Model., 3:1 (1991), 107–114
-
The approximation of generalized stochastic gradients of random regular functions
Zh. Vychisl. Mat. Mat. Fiz., 31:5 (1991), 681–688
-
A stochastic finite-difference algorithm for minimizing a maximin function
Zh. Vychisl. Mat. Mat. Fiz., 31:4 (1991), 629–633
-
A method for approximating the pseudogradient mapping of a linked-maximum function
Zh. Vychisl. Mat. Mat. Fiz., 31:3 (1991), 353–362
-
On a method of designing complex engineering systems
Avtomat. i Telemekh., 1990, no. 9, 163–171
-
Attraction of trajectories of finite-difference inclusions and
stability of numerical methods of stochastic nonsmooth optimization
Dokl. Akad. Nauk SSSR, 313:6 (1990), 1373–1376
-
Grades construction methods over the inequalities relations kernels
Mat. Model., 2:6 (1990), 132–140
-
The minimax methods of dynamical systems synthesis
Mat. Model., 2:6 (1990), 118–131
-
The method of generalized stochastic gradient for solving minimax problems with constrained variables
Zh. Vychisl. Mat. Mat. Fiz., 30:4 (1990), 491–500
-
The complexity of the computation of the global extremum in a class of multi-extremum problems
Zh. Vychisl. Mat. Mat. Fiz., 30:3 (1990), 379–387
-
The direct Lyapunov method in investigating the attraction of trajectories of finite-difference inclusions
Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990), 22–32
-
A problem of hydrodynamics with a free boundary
Differ. Uravn., 23:12 (1987), 2108–2114
-
Direct methods for calculating optimal programs in dynamic problems of vector optimization
Zh. Vychisl. Mat. Mat. Fiz., 25:1 (1985), 12–22
© , 2026