RUS  ENG
Full version
PEOPLE

Perevozchikov Alexander Gennadyevich

Publications in Math-Net.Ru

  1. The "attack-defense" model on networks with the initial residuals of the parties

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2021, no. 2,  68–81
  2. Minimax problem of suppressing a communication network

    Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021),  1390–1400
  3. The “attack-defense” game with restrictions on the intake capacity of points

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 3,  78–92
  4. To the problem of distribution of different types of defensive means by the criterion of the difference in losses

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2019, no. 2,  26–41
  5. Multilayered attack–defense model on networks

    Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1448–1456
  6. Unhomogeneous «attack-defense» game on the basis of the generalized equalization principle

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 1,  89–106
  7. An attack-defense model with inhomogeneous resources of the opponents

    Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018),  42–51
  8. A multi-step generalization of the "attack-defense" model

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 2,  89–100
  9. Multi-level expansion of the model "attack-defense"

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 1,  57–69
  10. Direct extension of Gordon formula in case of irregular cash flow

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2011, no. 22,  127–134
  11. The stochastic method of generalized Clarke gradients for solving two-stage problems of stochastic programming with coupled variables

    Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993),  453–455
  12. On the investigation of the practical convergence of an algorithm of global optimization

    Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993),  309–313
  13. Convergence of Clarke's generalized gradient method in problems of minimization of Lipschitz functions

    Zh. Vychisl. Mat. Mat. Fiz., 32:2 (1992),  208–216
  14. On the approximation of criteria in problems on the dynamic synthesis of manipulator robots

    Dokl. Akad. Nauk SSSR, 320:1 (1991),  58–61
  15. Approximation of preference relations on a set of dynamical systems

    Dokl. Akad. Nauk SSSR, 319:5 (1991),  1091–1094
  16. Regularization of kernels of binary relations defined by inequalities

    Dokl. Akad. Nauk SSSR, 316:5 (1991),  1068–1071
  17. A variant of the maximum principle for optimal processes with vector criteria

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9,  38–43
  18. On the practical convergence of subgradient methods of the manufacturing systems synhtesis

    Mat. Model., 3:3 (1991),  130–136
  19. On the one test to the minimax synthesis of the technical systems

    Mat. Model., 3:1 (1991),  107–114
  20. The approximation of generalized stochastic gradients of random regular functions

    Zh. Vychisl. Mat. Mat. Fiz., 31:5 (1991),  681–688
  21. A stochastic finite-difference algorithm for minimizing a maximin function

    Zh. Vychisl. Mat. Mat. Fiz., 31:4 (1991),  629–633
  22. A method for approximating the pseudogradient mapping of a linked-maximum function

    Zh. Vychisl. Mat. Mat. Fiz., 31:3 (1991),  353–362
  23. On a method of designing complex engineering systems

    Avtomat. i Telemekh., 1990, no. 9,  163–171
  24. Attraction of trajectories of finite-difference inclusions and stability of numerical methods of stochastic nonsmooth optimization

    Dokl. Akad. Nauk SSSR, 313:6 (1990),  1373–1376
  25. Grades construction methods over the inequalities relations kernels

    Mat. Model., 2:6 (1990),  132–140
  26. The minimax methods of dynamical systems synthesis

    Mat. Model., 2:6 (1990),  118–131
  27. The method of generalized stochastic gradient for solving minimax problems with constrained variables

    Zh. Vychisl. Mat. Mat. Fiz., 30:4 (1990),  491–500
  28. The complexity of the computation of the global extremum in a class of multi-extremum problems

    Zh. Vychisl. Mat. Mat. Fiz., 30:3 (1990),  379–387
  29. The direct Lyapunov method in investigating the attraction of trajectories of finite-difference inclusions

    Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990),  22–32
  30. A problem of hydrodynamics with a free boundary

    Differ. Uravn., 23:12 (1987),  2108–2114
  31. Direct methods for calculating optimal programs in dynamic problems of vector optimization

    Zh. Vychisl. Mat. Mat. Fiz., 25:1 (1985),  12–22


© Steklov Math. Inst. of RAS, 2026