RUS  ENG
Full version
PEOPLE

Radayev Yuri Nikolaevich

Publications in Math-Net.Ru

  1. Quartic corrections in energy potentials of hemitropic micropolar solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025),  472–485
  2. On quadratic corrections of constitutive equations for a hemitropic micropolar elastic solid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:2 (2025),  274–293
  3. Two-dimensional Nye figures for hemitropic micropolar elastic solids

    Izv. Saratov Univ. Math. Mech. Inform., 24:1 (2024),  109–122
  4. Wave criteria for ultratropic micropolar elastic solids

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 4(62),  127–138
  5. Wavenumbers of coupled plane thermoelastic wave in ultraisotropic medium

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 3(61),  128–139
  6. Plane harmonic thermoelastic waves in ultrahemitropic micropolar solid

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 2(60),  116–128
  7. Wave numbers of harmonic plane waves of translational and spinor displacements in a semiisotropic thermoelastic solid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:3 (2024),  445–461
  8. Multiweights thermomechanics of hemitropic micropolar solids

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 4(58),  86–120
  9. On the polyvariance of the base equations of coupled micropolar thermoelasticity

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 3(57),  112–128
  10. Thermic and athermic plane harmonic waves in acentric isotropic solid

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 2(56),  99–107
  11. Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:4 (2023),  389–403
  12. Thermomechanical states of gyrotropic micropolar solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023),  659–678
  13. Generalized pseudotensor formulations of the Stokes' integral theorem

    Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022),  205–215
  14. On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:3 (2022),  592–602
  15. On covariant non-constancy of distortion and inversed distortion tensors

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022),  36–47
  16. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021),  776–786
  17. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021),  457–474
  18. Representation of waves of displacements and micro-rotations by systems of the screw vector fields

    Izv. Saratov Univ. Math. Mech. Inform., 20:4 (2020),  468–477
  19. On the Neuber theory of micropolar elasticity. A pseudotensor formulation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020),  752–761
  20. On a micropolar theory of growing solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020),  424–444
  21. On wave solutions of dynamic equations of hemitropic micropolar thermoelasticity

    Izv. Saratov Univ. Math. Mech. Inform., 19:4 (2019),  454–463
  22. On a differential constraint in the continuum theory of growing solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019),  646–656
  23. On plane thermoelastic waves in hemitropic micropolar continua

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019),  464–474
  24. Asymmetric tensor representations in micropolar continuum mechanics theories

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019),  246–255
  25. Instantaneously not elongated directors in three-dimensional kinematics of the Coulomb–Mohr medium

    Izv. Saratov Univ. Math. Mech. Inform., 18:4 (2018),  467–483
  26. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018),  504–517
  27. On rationally complete algebraic systems of finite strain tensors of complex continua

    Izv. Saratov Univ. Math. Mech. Inform., 17:1 (2017),  71–84
  28. Micropolar thermoelastic continuum models with constrained microstructural parameters

    Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015),  451–461
  29. On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua

    Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015),  79–89
  30. On frame indifferent Lagrangians of micropolar thermoelastic continuum

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015),  325–340
  31. Hyperbolic theories and problems of continuum mechanics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015),  186–202
  32. On a form of the first variation of the action integral over a varied domain

    Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014),  199–209
  33. A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua

    Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014),  77–87
  34. On Strong and Weak Discontinuities of the Coupled Thermomechanical Field in Micropolar Thermoelastic Type-II Continua

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  85–97
  35. On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014),  66–85
  36. Rotational invariance of non-linear Lagrangians of type-II micropolar thermoelastic continuum

    Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013),  96–102
  37. Covariant field equations and $d$-tensors of hyperbolic thermoelastic continuum with fine microstructure

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013),  60–68
  38. On a fine localization of the Mathieu azimuthal numbers by Cassini ovals

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  260–269
  39. Coupled thermodynamic orhogonality in non-linear models of type-III thermoelasticity

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  207–214
  40. On precisely conserved quantities of coupled micropolar thermoelastic field

    Izv. Saratov Univ. Math. Mech. Inform., 12:4 (2012),  71–79
  41. Thermomechanical orthogonality in nonlinear type-III thermoelasticity (GNIII)

    Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  72–82
  42. Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder

    Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012),  68–81
  43. Cross-coupled type-III thermoelastic waves of a given azimuthal number in a waveguide under sidewall heat interchanging

    Izv. Saratov Univ. Math. Mech. Inform., 11:4 (2011),  86–108
  44. An optimal system constructing algorithm for symmetry algebra of three-dimensional equations of the perfect plasticity

    Izv. Saratov Univ. Math. Mech. Inform., 11:2 (2011),  61–77
  45. Generalized cross-coupled type-III thermoelastic waves propagating via a waveguide under sidewall heat interchange

    Izv. Saratov Univ. Math. Mech. Inform., 11:1 (2011),  59–70
  46. Wavenumbers of type III thermoelastic waves in a long waveguide under sidewall heat interchanging

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  53–61
  47. Propagation of thermoelastic impulse through a cylindrical waveguide under sidewall heat interchanging

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011),  221–227
  48. An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011),  196–220
  49. On wavenumbers of plane harmonic type III thermoelastic waves

    Izv. Saratov Univ. Math. Mech. Inform., 10:3 (2010),  46–53
  50. Coupled dynamic problems of hyperbolic thermoelasticity

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(2) (2009),  94–127
  51. Mathematical models and contemporary theories of physical fields

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(2) (2009),  41–94
  52. Three-dimensional problem of perfect plasticity (kinematic equations determining three-dimensional plastic flow for a facet and edge of the Tresca prism)

    Izv. Saratov Univ. Math. Mech. Inform., 8:2 (2008),  34–76
  53. Estimate of the latent free energy and damage at the tip of an opening–mode crack

    Prikl. Mekh. Tekh. Fiz., 41:6 (2000),  106–117
  54. On the influence of the remote plastic zone on opening mode crack growth

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 7 (1999),  70–85
  55. Elastoplastic torsion of prismatic rods

    Dokl. Akad. Nauk SSSR, 297:3 (1987),  563–566

  56. Leonid Yu. Kossovich. To the 75th birthday anniversary

    Izv. Saratov Univ. Math. Mech. Inform., 24:1 (2024),  150–157
  57. Professor Leonid Yu. Kossovich (to the 70$^{\mathrm {th}}$ anniversary)

    Izv. Saratov Univ. Math. Mech. Inform., 18:4 (2018),  507–521
  58. Professor Alexander Vladimirovich Manzhirov (on his 60th birthday)

    Izv. Saratov Univ. Math. Mech. Inform., 17:4 (2017),  465–483
  59. To the 60$^{\mathrm{th}}$ Anniversary of Professor Alexander Vladimirovich Manzhirov

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017),  401–416
  60. Professor Dyuis D. Ivlev. Dedication to 85th Birtday

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016),  197–219
  61. To 60-th anniversary of professor A. O. Vatulyan

    Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013),  111–118
  62. In Memory of Dyuis D. Ivlev

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(31) (2013),  9–12
  63. Professor Dyuis Danilovich Ivlev (on his 80th birthday)

    Izv. Saratov Univ. Math. Mech. Inform., 10:4 (2010),  69–91


© Steklov Math. Inst. of RAS, 2026