|
|
Publications in Math-Net.Ru
-
The errors investigation in problems for solving simple equations of mathematical physics by iterative methods
Sib. Zh. Vychisl. Mat., 24:2 (2021), 131–144
-
Modelling of the axisymmetric precision electrochemical shaping
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020), 39–51
-
Comparison of quasi-stationary and non-stationary solutions of electrochemical machining problems applying to precision cutting with plate electrode-tool
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 5–19
-
Quasi-stationary solution of a problem of electrochemical copying of a cogged surface
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 8, 86–91
-
Simulation of electrochemical copying in a finite-width cell
Prikl. Mekh. Tekh. Fiz., 58:6 (2017), 167–176
-
Stationary electrochemical machining simulation applying to precision technologies
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017), 15–25
-
The peculiarities of error accumulation in solving problems for simple equations of mathematical physics by finite difference methods
Sib. Zh. Vychisl. Mat., 19:2 (2016), 139–152
-
Limit model of electrochemical dimensional machining of metals
Prikl. Mekh. Tekh. Fiz., 55:4 (2014), 193–201
-
Exact solutions of two limiting quasistationary electrochemical shaping
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 12, 21–29
-
Simulation of precision electrochemical machining of metals by a segmented cathode
Prikl. Mekh. Tekh. Fiz., 52:6 (2011), 185–192
-
Problem of heavy fluid flow above a plate in the presence of a vortex
Prikl. Mekh. Tekh. Fiz., 52:1 (2011), 54–59
-
The use of discontinuous functions for modeling the dissolution process of steady-state electrochemical shaping
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 10, 77–81
-
Determining the limiting solutions of nonstationary axisymmetric Hele–Shaw problems
Prikl. Mekh. Tekh. Fiz., 50:4 (2009), 87–99
-
Postcritical regimes in the nonlinear problem of vortex motion under the free surface of a weighable fluid
Prikl. Mekh. Tekh. Fiz., 41:1 (2000), 70–76
-
Gravitational waves on a bounded area of a fluid surface
Prikl. Mekh. Tekh. Fiz., 37:2 (1996), 83–89
-
Plane flow around a ponderable flexible shell
Trudy Sem. Kraev. Zadacham, 26 (1991), 109–114
© , 2026