RUS  ENG
Full version
PEOPLE

Skubenko Boris Fadeevich

Publications in Math-Net.Ru

  1. On a question of A. Woods and P. Bambah concerning codes of decomposable cubic forms

    Zap. Nauchn. Sem. POMI, 204 (1993),  90–92
  2. Invariants of triangulation of $\mathbb{R}^n$ by one-type cubes

    Zap. Nauchn. Sem. LOMI, 196 (1991),  117–121
  3. Minima of decomposable forms of degree $n$ in $n$ variables for $n\geqslant3$

    Zap. Nauchn. Sem. LOMI, 183 (1990),  142–154
  4. Minima of a decomposable cubic form of three variables

    Zap. Nauchn. Sem. LOMI, 168 (1988),  125–139
  5. Cyclic sets of numbers and lattices

    Zap. Nauchn. Sem. LOMI, 160 (1987),  151–158
  6. On the generalized Roth–Schmidt theorem

    Zap. Nauchn. Sem. LOMI, 134 (1984),  226–231
  7. Simultaneous approximations of cubic irrationalities by rational numbers

    Dokl. Akad. Nauk SSSR, 271:4 (1983),  809–812
  8. Simultaneous approximation of algebraic irrationalities

    Zap. Nauchn. Sem. LOMI, 116 (1982),  142–154
  9. The product of $n$ linear forms in $n$ variables

    Trudy Mat. Inst. Steklov., 158 (1981),  175–179
  10. An isolation theorem for decomposable forms of purely real algebraic fields of degree $n\ge3$

    Zap. Nauchn. Sem. LOMI, 112 (1981),  167–171
  11. There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices

    Zap. Nauchn. Sem. LOMI, 106 (1981),  134–136
  12. Translation theorem in the nonhomogeneous Minkovski problem

    Zap. Nauchn. Sem. LOMI, 91 (1979),  119–124
  13. A remark on an upper bound on the Hermite constant for the densest lattice packings of spheres

    Zap. Nauchn. Sem. LOMI, 82 (1979),  147–148
  14. Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$

    Zap. Nauchn. Sem. LOMI, 82 (1979),  144–146
  15. A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)

    Zap. Nauchn. Sem. LOMI, 82 (1979),  88–94
  16. Upper bound for the product of nonhomogeneous linear forms

    Mat. Zametki, 23:6 (1978),  789–797
  17. On Minkowski's conjecture for large $n$

    Trudy Mat. Inst. Steklov., 148 (1978),  218–224
  18. On a theorem of Cebotarev

    Dokl. Akad. Nauk SSSR, 233:2 (1977),  301–303
  19. A new variant of the proof of the inhomogeneous Minkowski conjecture for $n=5$

    Trudy Mat. Inst. Steklov., 142 (1976),  240–253
  20. The proof of Minkowski's hypothesis on product of $n$ linear inhomogeneous forms with $n$ variables for $n\leq5$

    Zap. Nauchn. Sem. LOMI, 33 (1973),  6–36
  21. On Minkowski’s conjecture for $n=5$

    Dokl. Akad. Nauk SSSR, 205:6 (1972),  1304–1305
  22. Estimation from above of the period of a quadratic irrationality

    Mat. Zametki, 5:4 (1969),  413–418
  23. The distribution of integer matrices and calculation of the volume of the fundamental domain of a unimodular group of matrices

    Trudy Mat. Inst. Steklov., 80 (1965),  129–144
  24. On the asymptotic behaviour of integral matrices of order $n$ and on an integral invariant of the group of unimodular matrices

    Dokl. Akad. Nauk SSSR, 153:2 (1963),  290–291
  25. On the asymptotic behavior of integral matrices of third order

    Dokl. Akad. Nauk SSSR, 146:5 (1962),  1007–1008
  26. The asymptotic distribution of integers on a hyperboloid of one sheet and ergodic theorems

    Izv. Akad. Nauk SSSR Ser. Mat., 26:5 (1962),  721–752
  27. Asymptotic distribution and ergodic properties of lattice points on a one-sheet hyperboloid

    Dokl. Akad. Nauk SSSR, 135:4 (1960),  794–795


© Steklov Math. Inst. of RAS, 2026