|
|
Publications in Math-Net.Ru
-
Efficient algorithms for solving inverse gravimetry and magnetometry problem on graphics processors
Num. Meth. Prog., 24:4 (2023), 368–385
-
Review on application of deep neural networks and parallel architectures for rock fragmentation problems
Vestn. YuUrGU. Ser. Vych. Matem. Inform., 12:4 (2023), 5–54
-
Parallel sweep algorithm for solving direct and inverse problems for time-fractional diffusion equation
Num. Meth. Prog., 23:4 (2022), 275–287
-
Application of analytical modeling of matrix-vector multiplication on multicore processors
Vestn. YuUrGU. Ser. Vych. Matem. Inform., 9:1 (2020), 69–82
-
Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer
Num. Meth. Prog., 16:1 (2015), 155–164
-
Algorithms for solving inverse geophysical problems on parallel computing systems
Sib. Zh. Vychisl. Mat., 16:2 (2013), 107–121
-
Iterative Newton Type Algorithms and Its Applications to Inverse Gravimetry Problem
Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013), 26–37
-
Methods for inverse magnitometry problem solving
Sib. Èlektron. Mat. Izv., 5 (2008), 620–631
-
The regular methods for inverse gravity problem solving
Sib. Èlektron. Mat. Izv., 5 (2008), 509–517
-
Parallel algorithms for solving the inverse gravity problem
and the distant communication between the MVS-1000 and the user
Num. Meth. Prog., 9:1 (2008), 129–140
-
Параллельные алгоритмы решения задачи гравиметрии о восстановлении плотности в слое
Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007), 3–21
-
On regular methods for solving the inverse gravity problems on massively parallel computing systems
Num. Meth. Prog., 8:1 (2007), 103–112
-
Solving the multicomponent diffusion problems by parallel matrix sweep algorithm
Mat. Model., 17:9 (2005), 85–92
-
Parallel algorithms for solving 3-d elasticity problem and sparse linear systems
Dal'nevost. Mat. Zh., 2:2 (2001), 10–28
-
The parallel algorithms for solving the threedimensional problems of elasticity by the boundary integral equations method
Sib. Zh. Vychisl. Mat., 3:2 (2000), 97–107
-
Parallel gauss algorithms for block tridiagonal linear systems
Mat. Model., 6:9 (1994), 61–67
© , 2026