RUS  ENG
Full version
PEOPLE

Zhukovskiy Vladislav Iosifovich

Publications in Math-Net.Ru

  1. On coalitional rationality in a three-person game

    Probl. Upr., 2025, no. 1,  40–45
  2. The Pareto equilibrium of objections and counterobjections in linear-quadratic games of $N$ person

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 17:1 (2025),  5–20
  3. Coalitional Pareto optimal solution of one differential game

    Izv. IMI UdGU, 63 (2024),  18–36
  4. Coalition Pareto-optimal solution in a nontransferable game

    Mat. Teor. Igr Pril., 16:1 (2024),  12–43
  5. Poincaré method of small parameter for construction of equilibria

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 3,  18–43
  6. The Existence of Berge-Vaisman Equilibrium in a Differential Positional Game of two Persons in which the Nash-Equilibrium is absent

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 3,  7–17
  7. The Berge and Nash equilibrium in the Bertrand duopoly

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 2,  14–25
  8. About one recursive way to construct an effective solution to an $N$-criteria problem

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 2,  7–13
  9. For mathematical formalization of differential positional game

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 1,  69–81
  10. Synthesis of equilibrium

    Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 2,  30–49
  11. Guaranteed solution for risk-neutral decision maker: an analog of maximin in single-criterion choice problem

    Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 2,  7–29
  12. A new approach to guaranteed solutions of multicriteria choice problems: Pareto consideration of Savage-Niehans risk and outcomes

    Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 1,  42–61
  13. A new approach to optimal solutions of noncooperative games: accounting for Savage-Niehans risk

    Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 1,  19–41
  14. Application of Lyapunov–Poincaré method of small parameter for Nash and Berge equilibrium designing in one differential two-player game

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023),  601–624
  15. The Savage principle and accounting for outcome in single-criterion nonlinear problem under uncertainty

    Izv. IMI UdGU, 59 (2022),  25–40
  16. On one modification of Nash equilibrium

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:2 (2022),  13–30
  17. A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium

    Izv. IMI UdGU, 57 (2021),  104–127
  18. To the individual stability of Pareto equilibrium of objections and counterobjections in a coalition differential positional 3-person game without side payments

    Mat. Teor. Igr Pril., 13:1 (2021),  89–101
  19. On one hybrid equilibrium

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:3 (2021),  71–86
  20. Uncertainty and discrete maximin

    Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 1,  7–31
  21. Linear quadratic game of N persons as the analog of antagonistic game

    Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 4,  56–82
  22. The stability of coalitional structure in differential linear-quadratic game of four persons

    Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 3,  15–18
  23. To the problem of cîàlitional equilibrium in mixed strategies

    Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 2,  19–38
  24. Strong coalitional equilibria in games under uncertainty

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020),  189–207
  25. Pareto equilibrium of objections and counterobjections in a differential game of three persons

    Mat. Teor. Igr Pril., 11:1 (2019),  39–72
  26. Hybrid equilibrium in $N$-person games

    Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 3,  66–81
  27. Differential game of three persons in which Nash equilibrium doesn't exist but equilibrium of objections and counterobjection is present

    Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 2,  39–66
  28. About one unsolved problem in matrix ordinary differential equations

    Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 1,  62–72
  29. Guaranteed risks and payoffs in a one-criterion problem

    Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 1,  7–23
  30. Cooperation in a conflict of $n$ persons under uncertainty

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:4 (2019),  29–40
  31. A solution guaranteed for a risk-neutral person to a one-criterion problem: an analog of the vector saddle point

    Izv. IMI UdGU, 52 (2018),  13–32
  32. Guaranteed decision for risk-neutrality: the analogue of maximin in one-criterion problem

    Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 3,  46–70
  33. Multistep Bertrand duopoly model with imports

    Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 2,  7–16
  34. About coalitional equilibrium

    Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 1,  17–30
  35. The existence of Berge equilibrium

    Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 1,  7–16
  36. Class of differential games with no Nash equilibrium, but with equilibrium of objections and counterobjections

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:2 (2018),  5–21
  37. A new approach to cooperation in a conflict with four members

    Izv. IMI UdGU, 50 (2017),  29–35
  38. Berge equilibrium in normal form static games: a literature review

    Izv. IMI UdGU, 49 (2017),  80–110
  39. Berge and Nash equilibrium in a linear-quadratic differential game

    Mat. Teor. Igr Pril., 9:1 (2017),  62–94
  40. A new approach to multicriteria problems under uncertainty

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017),  3–16
  41. Existence of Berge equilibrium in conflicts under uncertainty

    Avtomat. i Telemekh., 2016, no. 4,  114–133
  42. Mathematical foundations of the Golden Rule. II. Dynamic variant

    Mat. Teor. Igr Pril., 8:1 (2016),  27–62
  43. Altruistic (Berge) equilibrium in the model of Bertrand duopoly

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016),  27–45
  44. Mathematical foundations of the Golden Rule. I. Static variant

    Mat. Teor. Igr Pril., 7:3 (2015),  16–47
  45. Pareto-equilibrium strategy profile

    Mat. Teor. Igr Pril., 7:1 (2015),  74–91
  46. The Berge equilibrium in Cournot's model of oligopoly

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015),  147–156
  47. Coefficient criteria in choosing equilibrium conceptions (on the example of linear-quadratic game of two persons)

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015),  20–26
  48. Guaranteed risks and outcomes in “game against nature”

    Probl. Upr., 2014, no. 1,  14–26
  49. Equilibrating conflicts under uncertainty. II. Analogue of a maximin

    Mat. Teor. Igr Pril., 5:2 (2013),  3–45
  50. Equilibrating conflicts under uncertainty. I. Analogue of a saddle-point

    Mat. Teor. Igr Pril., 5:1 (2013),  27–44
  51. On the problem of diversification of contribution on the three deposits

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 4,  55–61
  52. Method of settlement of conflicts under uncertainty

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 3,  28–33
  53. Existence of threat counter-threat equilibrium in one non-cooperative game of three players

    Izv. IMI UdGU, 2005, no. 2(32),  65–76
  54. Risks and outcomes in some multicriterial dynamic problem

    Izv. IMI UdGU, 2004, no. 2(30),  53–64
  55. A hierarchical differential two-person game

    Differ. Uravn., 15:9 (1979),  1548–1561
  56. Differential games with a nonzero sum (a cooperative variant)

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 17 (1979),  3–112
  57. Nonzero sum differential games (coalition-free version)

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 15 (1977),  199–266
  58. Optimal controls in certain $N$-person differential games

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 1,  52–58
  59. On a differential $n$-person game

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 8,  59–68
  60. Çàäà÷à î âñòðå÷å äëÿ äèôôåðåíöèàëüíûõ èãð ñ èíòåãðàëüíîé ïëàòîé

    Upravliaemie systemy, 1969, no. 3,  60–70
  61. Conditional stability on a given time interval

    Differ. Uravn., 4:5 (1968),  858–867
  62. Certain sufficient conditions for stability of the trivial solution of a system of two differential equations of first order

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 3,  27–30
  63. On the conditional stability in the critical case of a double zero root

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 4,  53–57
  64. Instability and conditional stability in the critical case of $n$ zero roots

    Differ. Uravn., 1:12 (1965),  1601–1605

  65. Mikhail Tikhonovich Terekhin (a Tribute in Honor of His Seventieth Birthday)

    Differ. Uravn., 40:1 (2004),  3–4


© Steklov Math. Inst. of RAS, 2026