RUS  ENG
Full version
PEOPLE

Andreev Aleksandr Anatol'evich

Publications in Math-Net.Ru

  1. Olympiad of school students “TIIM: Technologies. Intelligence. Computer science. Mathematics” 2021/2022

    Math. Ed., 2022, no. 2(102),  19–37
  2. School olympiad technologies

    Math. Ed., 2021, no. 2(98),  54–70
  3. The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019),  186–194
  4. The Cauchy problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017),  752–759
  5. The Cauchy problem for a general hyperbolic differential equation of the $n$-th order with the nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016),  241–248
  6. Boundary value problems for matrix Euler–Poisson–Darboux equation with data on a characteristic

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015),  603–612
  7. Cauchy Problem For the System Of the General Hyperbolic Differential Equations Of the Forth Order With Nonmultiple Characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  7–15
  8. The Characteristic Problem for one Hyperbolic Differentional Equation of the Third Order with Nonmultiple Characteristics

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013),  3–6
  9. The characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  31–36
  10. Boundary control for the processes, described by hyperbolic systems

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  24–30
  11. The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011),  35–41
  12. Применение матричных интегро-дифференциальных операторов в решении задачи Коши для некоторых систем обыкновенных дифференциальных уравнений с производными дробного порядка

    Matem. Mod. Kraev. Zadachi, 3 (2009),  31–38
  13. Некоторые свойства смешанных дробных интегро-дифференциальных операторов Римана–Лиувилля и их приложение к решению задачи Гурса для одного дифференциального уравнения

    Matem. Mod. Kraev. Zadachi, 3 (2008),  16–20
  14. The boundary control problem for the system of wave equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(16) (2008),  5–10
  15. К постановке начальных и начально-краевых задач для одного класса систем вырождающихся дифференциальных уравнений

    Matem. Mod. Kraev. Zadachi, 3 (2007),  23–28
  16. Об одной краевой задаче для нелокального уравнения, порожденного оператором Лаврентьева–Бицадзе

    Matem. Mod. Kraev. Zadachi, 3 (2006),  45–46
  17. Постановка и обоснование корректности аналога задачи Коши для одного нелокального гиперболического уравнения c вырождением порядка

    Matem. Mod. Kraev. Zadachi, 3 (2006),  39–45
  18. Решение задачи Коши и Гурса для системы продольно-крутильных колебаний длинной естественно закрученной нити

    Matem. Mod. Kraev. Zadachi, 3 (2006),  35–39
  19. К постановке и обоснованию корректности начальной краевой задачи для одного класса нелокальных вырождающихся уравнений гиперболического типа

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 43 (2006),  44–51
  20. On an Analog of Tricomi Problem for a Certain Model Equation with Involutive Deviation in Infinite Domain

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 34 (2005),  10–16
  21. Analogs of Classical Boundary Value Problems for a Second-Order Differential Equation with Deviating Argument

    Differ. Uravn., 40:8 (2004),  1126–1128
  22. Краевая задача для уравнения с матричным интегродифференциальным оператором

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26 (2004),  5–10
  23. Some local and non-local analogues of the Cauchy–Goursat problem for a system of Bitsadze–Lykov equations with an involutive matrix

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002),  19–35
  24. Application of matrix integral-differential operators in the formulation and solution of nonlocal boundary value problems for systems of hyperbolic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 12 (2001),  45–53
  25. О корректности начальных краевых задач для одного гиперболического уравнения с вырождением порядка и инволютивным отклонением

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 9 (2000),  32–36
  26. Matrix integro-differential operators and their application

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 7 (1999),  27–37
  27. Some associated hypergeometric functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 12,  3–12

  28. School olympiad “ TIIM — Technologies. Intelligence. Computer Science. Mathematics”

    Math. Ed., 2025, no. 2(114),  60–78
  29. Olympiad for schoolchildren “TIIM — Technologies. Intelligence. Computer science. Mathematics”

    Math. Ed., 2024, no. 2(110),  55–68
  30. Olympiad for schoolchildren “TIIM — Technology. Intelligence. Computer Science. Mathematics” 2022/2023

    Math. Ed., 2023, no. 2(106),  37–55
  31. To the 70$^{\rm th}$ Anniversary of Professor Alexander Pavlovich Soldatov

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018),  15–22
  32. To the 75$^{\rm th}$ Anniversary of Professor Evgeniy Vladimirovich Radkevich

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018),  7–14
  33. In Memory of Anatoliy A. Kilbas

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  6–9


© Steklov Math. Inst. of RAS, 2026