RUS  ENG
Full version
PEOPLE

Polyakova Lyudmila Nickolaevna

Publications in Math-Net.Ru

  1. Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:1 (2023),  120–134
  2. Smooth approximations of nonsmooth convex functions

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022),  535–547
  3. Exact penalty functions in the problem of choosing the optimal wholesale order in the face of rapid fluctuations in demand

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021),  397–408
  4. The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:1 (2021),  47–58
  5. Gradient method for solving some types of differential inclusions

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  256–273
  6. Mathematical model of the integrated supply chain

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:3 (2019),  353–361
  7. Maximin approach in estimating of the goods order volume under condition of falling demand

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:4 (2018),  352–361
  8. Modeling of the ordering process for piecewise-linear demand with saturation

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:2 (2017),  138–146
  9. Probabilistic model of terminal services

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 3,  32–38
  10. Exact penalty functions in the problem of a queueing system

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 1,  75–82
  11. Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 4,  56–63
  12. The exact penalty method for the solution of one problem of convex programming

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 1,  72–78
  13. The problem of projecting the origin on a quadric

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 1,  11–17
  14. Some properties of the support function of a convex set on a convex cone

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 3,  70–78
  15. The hypodifferential and the $\varepsilon$-subdifferential of polyhedral function

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 3,  64–71
  16. Some methods for the minimization of the maximum of quadratic functions

    Vladikavkaz. Mat. Zh., 8:4 (2006),  46–57
  17. On the method of exact quasidifferentiable penalty functions

    Zh. Vychisl. Mat. Mat. Fiz., 41:2 (2001),  225–238
  18. Conditions for a minimum of a quasidifferentiable function on a quasidifferentiable set

    Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980),  849–856

  19. V. F. Demianov

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2,  154–156
  20. P. A. Nelepin (to the 85th birthday anniversary)

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3,  183–184


© Steklov Math. Inst. of RAS, 2026