RUS  ENG
Full version
PEOPLE

Vinogradov Aleksandr Vladimirovich

Publications in Math-Net.Ru

  1. Development of numerical methods for applications of coherent radiation in studies of the internal structure of objects (Part II)

    Kvantovaya Elektronika, 54:9 (2024),  557–564
  2. Development of numerical methods for applications of coherent radiation in studies of the internal structure of objects (Part I)

    Kvantovaya Elektronika, 54:9 (2024),  553–556
  3. Energy density and spectrum of single-cycle and sub-cycle electromagnetic pulses

    Kvantovaya Elektronika, 50:2 (2020),  187–194
  4. Wave packet in the phase problem in optics and ptychography

    UFN, 190:8 (2020),  820–828
  5. Energy density in a collapsing electromagnetic wave

    Kvantovaya Elektronika, 48:11 (2018),  1073–1075
  6. Reflective mode X-ray microscopy of inclined objects

    Kvantovaya Elektronika, 48:7 (2018),  662–666
  7. Laser-electron generators: the sources of narrow-band X-ray radiation for low-invasive coronary angiography

    Kvantovaya Elektronika, 48:6 (2018),  565–572
  8. On contrast of biological X-ray nanomicroscopy

    Kvantovaya Elektronika, 47:11 (2017),  1041–1044
  9. On angiography with a Thomson laser-electron X-ray generator

    Kvantovaya Elektronika, 47:1 (2017),  75–78
  10. X-ray reduction imaging of inclined reflective masks at critical angles

    Kvantovaya Elektronika, 46:9 (2016),  839–844
  11. Sliced linear zone plates for hard X-ray radiation

    Zhurnal Tekhnicheskoi Fiziki, 82:9 (2012),  101–106
  12. Simulation of grazing-incidence coherent imaging

    Kvantovaya Elektronika, 42:2 (2012),  140–142
  13. On the explicit parametric description of waves in periodic media

    Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009),  1119–1130
  14. Structure of the core—cladding interface and radiation losses in hollow planar Bragg waveguides

    Kvantovaya Elektronika, 38:11 (2008),  1039–1044
  15. Scalar theory of low-contrast Bragg waveguides

    Kvantovaya Elektronika, 37:9 (2007),  873–880
  16. Algorithm for calculating the optimal parameters of multilayer aperiodic mirrors for soft X-rays

    Kvantovaya Elektronika, 35:2 (2005),  195–199
  17. X-ray microscopy in the carbon window region

    Kvantovaya Elektronika, 34:8 (2004),  691–692
  18. The use of perfect crystals in high-resolution X-ray spectroscopy

    Pis'ma v Zh. Èksper. Teoret. Fiz., 78:10 (2003),  1118–1120
  19. Repetitively pulsed X-ray laser operating on the 3p – 3s transition of the Ne-like argon in a capillary discharge

    Kvantovaya Elektronika, 33:1 (2003),  7–17
  20. Laser electron-beam X-ray source for medical applications

    UFN, 173:8 (2003),  899–903
  21. Multilayer X-ray optics

    Kvantovaya Elektronika, 32:12 (2002),  1113–1121
  22. Focusing the beam of a compact, repetitively pulsed x-ray laser to study the interaction of radiation with metallic targets and x-ray reflectometry

    Kvantovaya Elektronika, 30:4 (2000),  328–332
  23. Determination of the roughness of concave laser mirrors

    Kvantovaya Elektronika, 24:9 (1997),  845–850
  24. Calculation method for unsteady reacting flows with strong and weak discontinuities tracking

    Mat. Model., 8:3 (1996),  79–90
  25. Diffraction efficiency of layer transmission optics

    Kvantovaya Elektronika, 22:12 (1995),  1215–1219
  26. Reflective soft x-ray microscope for the investigation of objects illuminated by laser-plasma radiation

    Kvantovaya Elektronika, 22:9 (1995),  951–954
  27. Optimization of highly reflective multilayer mirrors for the wavelength interval 100–150 nm

    Kvantovaya Elektronika, 20:9 (1993),  933–935
  28. Projection x-ray lithography implemented using point sources

    Kvantovaya Elektronika, 19:2 (1992),  114–127
  29. Feasibility of using one coincidence of the wavelengths of the spectral lines of the pump radiation and active medium in the VUV range

    Kvantovaya Elektronika, 17:7 (1990),  892–893
  30. Undulator and laser sources of soft x rays

    UFN, 159:1 (1989),  143–154
  31. On the possibility of X-ray projection lithography realization

    Dokl. Akad. Nauk SSSR, 302:1 (1988),  82–85
  32. Residual infrared absorption in metal mirrors

    Kvantovaya Elektronika, 15:8 (1988),  1651–1657
  33. Rotation of the soft X-radiation by a spherical surface

    Dokl. Akad. Nauk SSSR, 292:3 (1987),  594–596
  34. Optical pumping systems for lasers emitting in the vacuum ultraviolet range

    Kvantovaya Elektronika, 14:7 (1987),  1501–1511
  35. Characteristics of a laser plasma x-ray source (review)

    Kvantovaya Elektronika, 14:1 (1987),  5–26
  36. Optical theorem for scattering in the presence of an interphase

    Dokl. Akad. Nauk SSSR, 286:6 (1986),  1377–1379
  37. Selection of materials for concentrators designed for optical pumping of ultraviolet and vacuum ultraviolet lasers

    Kvantovaya Elektronika, 13:12 (1986),  2424–2430
  38. On the surface states of electrons in superlattices

    Dokl. Akad. Nauk SSSR, 280:3 (1985),  587–590
  39. Resonant photoexcitation as a pumping mechanism for far ultraviolet lasers

    Kvantovaya Elektronika, 11:4 (1984),  653–660
  40. Amplification of ultraviolet radiation in a laser plasma

    Kvantovaya Elektronika, 10:11 (1983),  2325–2331
  41. New types of mirrors for the soft x-ray range (review)

    Kvantovaya Elektronika, 10:11 (1983),  2152–2165
  42. Dependence of the x-ray yield from a laser plasma on the target material

    Kvantovaya Elektronika, 10:4 (1983),  741–747
  43. Gain in the 100–1000 Å range in a homogeneous stationary plasma

    Kvantovaya Elektronika, 10:3 (1983),  516–522
  44. Ionization and expansion of a multiply charged laser plasma

    Kvantovaya Elektronika, 10:3 (1983),  509–516
  45. On the wide-band mixors for the vacuum ultraviolet and soft X-ray radiation

    Dokl. Akad. Nauk SSSR, 266:3 (1982),  610–612
  46. Investigation of a laser-plasma source of soft x rays operating at laser power densities 5×1011–2×1014 W/cm2

    Kvantovaya Elektronika, 9:8 (1982),  1525–1529
  47. Self-absorption of x-ray spectral lines in an expanding laser plasma

    Kvantovaya Elektronika, 8:1 (1981),  28–35
  48. Elementary processes and x-ray spectra of multiply charged ions in dense high-temperature plasmas

    UFN, 129:2 (1979),  177–209
  49. Dependence of the spectrum of hydrogen-like ions on the electron density in a laser plasma

    Kvantovaya Elektronika, 5:5 (1978),  1077–1082
  50. Stimulated emission in far ultraviolet due to transitions in multiply charged neon-like ions

    Kvantovaya Elektronika, 5:2 (1978),  417–421
  51. Role of many-photon and impact ionization in the breakdown of dielectrics by picosecond laser pulses

    Kvantovaya Elektronika, 4:5 (1977),  1144–1147
  52. Population inversion of transitions in neon-like ions

    Kvantovaya Elektronika, 4:1 (1977),  63–68
  53. Calculation of the gain for transitions in helium-like ions in the range λ < 50 nm

    Kvantovaya Elektronika, 3:5 (1976),  981–985
  54. Diagnostics of dense laser plasmas based on the spectra of hydrogen-like and helium-like multiply charged ions

    Kvantovaya Elektronika, 1:3 (1974),  579–590
  55. Spectroscopic methods for diagnostics of superdense hot plasma

    Kvantovaya Elektronika, 1:2 (1974),  268–278
  56. Influence of two-photon processes on the x-ray emission spectrum of a laser plasma

    Kvantovaya Elektronika, 1973, no. 2(14),  105–107
  57. Heating of a plasma in stimulated scattering of laser radiation (review)

    Kvantovaya Elektronika, 1972, no. 2(8),  3–22
  58. Macroscopic approach to effects of radiative interaction of atoms and molecules

    UFN, 102:1 (1970),  43–54
  59. О возбуждении атомов нейтральным и частицами

    TVT, 4:1 (1966),  3–11

  60. In Memory of Nikolai Gennadievich Basov

    Kvantovaya Elektronika, 31:8 (2001),  751
  61. Фокусировка пучка компактного импульсно-периодического рентгеновского лазера для изучения взаимодействия излучения с металлическими мишенями и рентгеновской рефлектометрии («Квантовая электроника», 2000, т. 30, № 4, с. 328–332).

    Kvantovaya Elektronika, 30:7 (2000),  658


© Steklov Math. Inst. of RAS, 2026