RUS  ENG
Full version
PEOPLE

Khmyleva Tat'ana Evgen'evna

Publications in Math-Net.Ru

  1. On complementarity and linear homeomorphism of $C_p(X)$ spaces for countable metric spaces $ X$

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  236–246
  2. On linear homeomorphisms of spaces of continuous functions with the pointwise convergence topology

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  48–55
  3. On the $t$-equivalence of generalized ordered sets

    Sibirsk. Mat. Zh., 64:2 (2023),  441–448
  4. On a Homeomorphism between the Sorgenfrey Line $S$ and Its Modification $S_P$

    Mat. Zametki, 103:2 (2018),  258–272
  5. A complete topological classification of the space of Baire functions on ordinals

    Sibirsk. Mat. Zh., 59:6 (2018),  1268–1278
  6. On modification of the Sorgenfrey line

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46,  36–40
  7. Linear homeomorphisms of spaces of continuous functions on long Sorgenfrey lines

    Sibirsk. Mat. Zh., 57:3 (2016),  709–717
  8. On the homeomorphism of the Sorgenfrey line and its modifications $S_{\mathcal{Q}}$

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 1(39),  53–56
  9. On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 5(31),  63–68
  10. On homeomorphisms of spaces $I\times[1,\alpha]$ with the Sorgenfrey topology

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25),  40–44
  11. Continuity of convex functions

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25),  26–29
  12. On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2(18),  29–32
  13. On mutual “orthogonality” of classes of the spaces $C_p(X)$ and $L_p(Y)$

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 1(17),  16–19
  14. Classification of spaces of Baire functions on ordinal intervals

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  61–66
  15. Local compactness and homeomorphisms of spaces of continuous functions

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 3(11),  61–68
  16. On some systems of a Hilbert space which are not bases

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 3(11),  53–60
  17. Spaces of Functions of the First Baire Class in the Topology of Pointwise Convergence and their $l$-Equivalence

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 3(4),  35–41
  18. The Generalization of “Aleksandrov’s Dublicate” of Sorgenfrey Line and Set Rational Points

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 2(3),  67–71
  19. Classification of the Free Boolean Topological Groups on Ordinals

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 1(2),  23–31
  20. On some sequence of Hilbert space elements, which is not basis

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2007, no. 1,  58–62
  21. Compactness is not preserved by the $t$-equivalence relation

    Mat. Zametki, 39:6 (1986),  895–903
  22. Isomorphisms of spaces of bounded continuous functions

    Zap. Nauchn. Sem. LOMI, 113 (1981),  243–246
  23. Classification of spaces of continuous functions on segments of ordinals

    Sibirsk. Mat. Zh., 20:3 (1979),  624–631

  24. To the 75th anniversary of Gennadiy Vasil'evich Sibiryakov

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 1(39),  125–128


© Steklov Math. Inst. of RAS, 2026