RUS  ENG
Full version
PEOPLE

Nemtchinov Ivan Vasil'evich

Publications in Math-Net.Ru

  1. The aerodynamic characteristics of the body being flown around under different location of the warm needle

    Mat. Model., 8:1 (1996),  3–10
  2. Modelling of the evolution of the gas-dust clouds caused by asteroids and comets impacts

    Dokl. Akad. Nauk, 332:1 (1993),  85–88
  3. The active geophysical rocket experiments with ejection of a fast plasmas jet in the ionosphere

    Dokl. Akad. Nauk, 331:4 (1993),  486–489
  4. Induced vorticity and mixing in supersonic flows

    Dokl. Akad. Nauk, 331:4 (1993),  439–442
  5. The effect of the long-deeped channel in shallow water

    Dokl. Akad. Nauk, 328:1 (1993),  43–45
  6. Radiation gas dynamic processes in an explosion caused by high-velocity impact of a cosmic body in Mars' atmosphere

    Prikl. Mekh. Tekh. Fiz., 34:6 (1993),  35–45
  7. Interaction of a shock wave with a boundary layer

    Prikl. Mekh. Tekh. Fiz., 34:3 (1993),  32–40
  8. Subsonic radiation waves. II. Propagation of two-dimensional waves

    Kvantovaya Elektronika, 19:3 (1992),  257–263
  9. Subsonic radiation waves. I. Waves supported by ultraviolet laser radiation

    Kvantovaya Elektronika, 19:3 (1992),  250–256
  10. Effect of the discreteness of geophysical medium on the motion of substance under high-speed impact on the Earth's surface

    Dokl. Akad. Nauk SSSR, 316:1 (1991),  77–79
  11. Intensified directivity of gas dispersal as a result of radiation energy loss

    Prikl. Mekh. Tekh. Fiz., 32:3 (1991),  17–22
  12. Mathematical modelling of the propagation of intensively radiating shock waves

    Zh. Vychisl. Mat. Mat. Fiz., 31:6 (1991),  901–921
  13. “Warm needle” ahead of blunt object in supersonic flow

    Dokl. Akad. Nauk SSSR, 310:1 (1990),  47–50
  14. Three-dimensional gas motion during breakdown at several points on a circle

    Fizika Goreniya i Vzryva, 26:6 (1990),  131–134
  15. Development of predecessors being formed during shock wave interaction with reduced density gas channels

    Fizika Goreniya i Vzryva, 26:2 (1990),  128–135
  16. Radiation emitted from a plasma created by the action of a СО2 laser pulse on a target in a vacuum

    Kvantovaya Elektronika, 17:10 (1990),  1310–1314
  17. Self-similar flows after instant energy release in gas with low-density channels

    Dokl. Akad. Nauk SSSR, 305:5 (1989),  1100–1103
  18. Simulation of radiation-regime motion of a meteoric body under conditions of high-speed lead plasma jet flowing around this body

    Dokl. Akad. Nauk SSSR, 304:4 (1989),  825–828
  19. Formation of new structures in gasdynamic flows due to density perturbations in thin channels before shock wave fronts

    Mat. Model., 1:8 (1989),  1–11
  20. Structure and brightness of nonsteady-state supercritical shock waves in air of reduced density

    Prikl. Mekh. Tekh. Fiz., 30:1 (1989),  35–41
  21. Effects of laser radiation of different wavelengths on an obstacle in vacuum

    Kvantovaya Elektronika, 16:2 (1989),  335–337
  22. Subsonic radiation waves in neon

    Kvantovaya Elektronika, 16:2 (1989),  333–335
  23. Limits of existence of optical detonation maintained by short-wavelength monochromatic radiation

    Kvantovaya Elektronika, 16:1 (1989),  79–80
  24. Quisistationary spherically summetric flow of an intensively emitting plasma heated by laser radiation

    Prikl. Mekh. Tekh. Fiz., 29:1 (1988),  3–11
  25. Self-similar evolution of a precursor before shock wave interacting with warm layer

    Dokl. Akad. Nauk SSSR, 296:3 (1987),  554–557
  26. Two-dimensional self-similar strong shock-wave motion along heated surface

    Dokl. Akad. Nauk SSSR, 293:5 (1987),  1082–1084
  27. Evolution of a "laser explosion" near a surface

    Kvantovaya Elektronika, 14:9 (1987),  1904–1906
  28. Intensely radiating, supercritical shock waves

    Prikl. Mekh. Tekh. Fiz., 27:2 (1986),  112–119
  29. CONVERGENT SHOCK-WAVE RADIATION

    Zhurnal Tekhnicheskoi Fiziki, 55:10 (1985),  2089–2091
  30. Influence of nonequilibrium of the chemical composition of a gas on its motion

    Prikl. Mekh. Tekh. Fiz., 26:3 (1985),  48–52
  31. Evolution of a plasma column under radiation conditions on exposure to a laser beam of annular cross section

    Kvantovaya Elektronika, 12:11 (1985),  2382–2384
  32. Spherical explosion with intense radiation in a restricted gas cloud

    Dokl. Akad. Nauk SSSR, 276:4 (1984),  858–861
  33. Explosions in a bounded volume of gas under strong radiation

    Prikl. Mekh. Tekh. Fiz., 25:6 (1984),  108–112
  34. On heat waves near the meteoric bodies moving with hypersonic velocity in the atmosphere

    Dokl. Akad. Nauk SSSR, 269:3 (1983),  578–580
  35. Slow and fast light combustion waves

    Fizika Goreniya i Vzryva, 18:3 (1982),  71–77
  36. Stationary mode of expansion of a vapor heated by radiation or a fast-particle flux

    Prikl. Mekh. Tekh. Fiz., 23:6 (1982),  14–22
  37. Subsonic radiation waves. Comparison of the theory with experiment

    Kvantovaya Elektronika, 9:7 (1982),  1373–1378
  38. Subsonic radiation waves in air

    Kvantovaya Elektronika, 9:3 (1982),  615–618
  39. Influence of plasma motion on propagation of supersonic radiation waves

    Kvantovaya Elektronika, 9:2 (1982),  436–438
  40. On the parameters of the dense plasma, high-pressure impulses, and intense radiation created by the powerful proton beams interacting with the target

    Dokl. Akad. Nauk SSSR, 261:6 (1981),  1337–1339
  41. Quasi-stationary ablation of the spherical target by intensive radiation of continuous spectrum

    Dokl. Akad. Nauk SSSR, 257:6 (1981),  1346–1348
  42. Subsonic radiation absorption waves of laser emission at an obstacle in air

    Fizika Goreniya i Vzryva, 17:1 (1981),  93–99
  43. Emission of a plasma formed by the action of a pulse of fast particles on a foil in a vacuum

    Prikl. Mekh. Tekh. Fiz., 22:3 (1981),  14–18
  44. Radiation of the strong shock waves reaching the gas – vacuum boundary

    Dokl. Akad. Nauk SSSR, 253:4 (1980),  874–876
  45. Numerical investigation of laser interaction with a target in a vacuum, including the spectral composition of the radiation emitted by the generated plasma

    Kvantovaya Elektronika, 7:11 (1980),  2356–2361
  46. Time of appearance of a plasma due to action of laser radiation of different wavelengths on an aluminum target in air

    Kvantovaya Elektronika, 7:8 (1980),  1831–1834
  47. Plasma formation due to interaction of a $CO_2$ laser pulse with an aluminum target

    Kvantovaya Elektronika, 7:1 (1980),  209–211
  48. Expansion of plasma layer near a laser-irradiated obstacle in high-density gases

    Dokl. Akad. Nauk SSSR, 247:6 (1979),  1368–1371
  49. On the occurrence of light detonation from a light burning wave

    Dokl. Akad. Nauk SSSR, 244:4 (1979),  877–880
  50. Transition from luminous combustion to luminous detonation

    Fizika Goreniya i Vzryva, 15:4 (1979),  37–49
  51. Estimate of the rate of destruction and the mechanical parameters during power ful energy liberation in polymers

    Fizika Goreniya i Vzryva, 15:3 (1979),  65–72
  52. Planar laser explosion near a target in air

    Kvantovaya Elektronika, 6:6 (1979),  1223–1230
  53. Radiation originating by the impact of a gas layer against an obstacle at very high velocities

    Prikl. Mekh. Tekh. Fiz., 19:6 (1978),  32–39
  54. Structure of the heating layer ahead of the front of a strong intensely emitting shock wave

    Prikl. Mekh. Tekh. Fiz., 19:5 (1978),  86–92
  55. Subsonic radiation waves propagating from a target toward the source of CO2 laser radiation

    Kvantovaya Elektronika, 5:10 (1978),  2138–2147
  56. Parameters of a plasma formed by the action of microsecond laser pulses on an aluminum target in vacuum

    Kvantovaya Elektronika, 5:10 (1978),  2123–2131
  57. Calculation of development of a laser explosion in air with allowance for emission

    Prikl. Mekh. Tekh. Fiz., 18:4 (1977),  24–32
  58. Propagation of a two-dimensional supersonic radiation wave

    Prikl. Mekh. Tekh. Fiz., 18:3 (1977),  34–41
  59. On the role of radiation during the motion of meteorites with very high velocities in the atmosphere

    Dokl. Akad. Nauk SSSR, 231:5 (1976),  1084–1087
  60. Shock waves associated with protracted energy release in a hot sphere

    Fizika Goreniya i Vzryva, 12:1 (1976),  113–116
  61. Calculation of the motion of a gas behind the front of a luminous detonation wave taking account of the lateral expansion of the plasma column

    Prikl. Mekh. Tekh. Fiz., 17:3 (1976),  18–28
  62. Shock propagation from an expanding hot volume

    Fizika Goreniya i Vzryva, 11:5 (1975),  776–781
  63. “Combustion” of condensed material under the influence of a radiation continuum

    Fizika Goreniya i Vzryva, 11:5 (1975),  730–734
  64. Self-similar problem of the motion of a plane layer of heated material with an arbitrary equation of state

    Prikl. Mekh. Tekh. Fiz., 16:5 (1975),  136–145
  65. Experimental investigation of the interaction between laser radiation and a target in air

    Kvantovaya Elektronika, 2:9 (1975),  1930–1942
  66. Numerical calculation of the propagation of a plane subsonic radiation wave through a gas in opposition to a flow of light radiation

    Prikl. Mekh. Tekh. Fiz., 15:4 (1974),  22–34
  67. Appearance of a layer absorbing laser radiation near the surface of a metal target

    Kvantovaya Elektronika, 1:5 (1974),  1268–1271
  68. On scattering of a gas behind deflagration waves propelled by powerful radiation fluxes

    Prikl. Mekh. Tekh. Fiz., 14:3 (1973),  41–48
  69. Cooling of the hot region formed by the breakdown of air with laser radiation

    Prikl. Mekh. Tekh. Fiz., 14:2 (1973),  54–63
  70. Formation of a plasma in a vapor layer produced by the action of laser radiation on a solid

    Kvantovaya Elektronika, 1973, no. 4(16),  20–27
  71. Redistribution of the powerful source radiation energy in a tube, taking account of the wall reradiation

    Dokl. Akad. Nauk SSSR, 206:3 (1972),  572–575
  72. Parameters of a stationary radially symmetrical jet of vapors heated by laser radiation

    Prikl. Mekh. Tekh. Fiz., 13:5 (1972),  58–75
  73. Screening of a surface vaporizing under laser bombardment, at temperature and ionization disequilibrium

    Prikl. Mekh. Tekh. Fiz., 12:5 (1971),  35–45
  74. Theory of the disintegration of a heated surface layer, allowing for its separation into individual phases

    Prikl. Mekh. Tekh. Fiz., 11:4 (1970),  79–90
  75. Absorption outburst of laser radiation and the gasdynamic effects connected with it

    Dokl. Akad. Nauk SSSR, 186:5 (1969),  1048–1051
  76. Numerical calculation of motion and laser radiation heating of plasma formed during absorption burst in vapors of a solid body

    Prikl. Mekh. Tekh. Fiz., 10:6 (1969),  3–19
  77. Self-similar motion of a gas heated by a nonequilibrium continuous radiation spectrum

    Prikl. Mekh. Tekh. Fiz., 9:5 (1968),  32–37
  78. Explosion-induced plane shock-wave attenuation in a solid body

    Prikl. Mekh. Tekh. Fiz., 9:4 (1968),  61–65
  79. Investigation of the influence exerted on a solid by luminous radiation from a source of the explosive type

    Prikl. Mekh. Tekh. Fiz., 8:1 (1967),  31–44
  80. Experimental study of the disintegration of an instantaneously heated medium and the resulting impulse at energy concentrations less than the heat of evaporation

    Prikl. Mekh. Tekh. Fiz., 7:6 (1966),  3–13
  81. Dispersion of an instantaneously heated material and determination of its equation of state from the pressure and momentum

    Prikl. Mekh. Tekh. Fiz., 7:5 (1966),  3–16
  82. Разлет подогреваемой массы газа в регулярном режиме

    Prikl. Mekh. Tekh. Fiz., 5:5 (1964),  18–29
  83. Приближенное определение параметров газа за фронтом ударной волны по закону движения фронта

    Prikl. Mekh. Tekh. Fiz., 4:4 (1963),  58–67
  84. The solution of boundary problems for partial differential equations of the second order of the elliptical type using the network method

    Zh. Vychisl. Mat. Mat. Fiz., 2:3 (1962),  418–436
  85. Разлет плоского слоя газа при постепенном выделении энергии

    Prikl. Mekh. Tekh. Fiz., 2:1 (1961),  17–26
  86. Пограничный слой вблизи передней критической точки цилиндра при передаче тепла излучением

    Prikl. Mekh. Tekh. Fiz., 1:4 (1960),  29–35
  87. Течение Куэтта с учетом переноса тепла излучением

    Prikl. Mekh. Tekh. Fiz., 1:3 (1960),  146–151
  88. Некоторые нестационарные задачи переноса тепла излучением

    Prikl. Mekh. Tekh. Fiz., 1:1 (1960),  36–57


© Steklov Math. Inst. of RAS, 2026