RUS  ENG
Full version
PEOPLE

Kapitanski Lev Vil'evich

Publications in Math-Net.Ru

  1. Universal extension operator

    Funktsional. Anal. i Prilozhen., 59:3 (2025),  64–70
  2. Geometry and analysis in nonlinear sigma models

    Algebra i Analiz, 18:1 (2006),  3–33
  3. Attractors of nonlinear evolution equations and their approximations

    Algebra i Analiz, 2:1 (1990),  114–140
  4. The Cauchy problem for a semilinear wave equation. II

    Zap. Nauchn. Sem. LOMI, 182 (1990),  38–85
  5. The Cauchy problem for a semilinear wave equation. III

    Zap. Nauchn. Sem. LOMI, 181 (1990),  24–64
  6. Some generalizations of the Strichartz–Brenner inequality

    Algebra i Analiz, 1:3 (1989),  127–159
  7. Estimates for Besov and Lizorkin–Triebel norms of solutions of the second-order linear hyperbolic equations

    Zap. Nauchn. Sem. LOMI, 171 (1989),  106–162
  8. The Cauchy problem for a semilinear wave equation. I

    Zap. Nauchn. Sem. LOMI, 163 (1987),  76–104
  9. Absence of time-periodic solutions to certain multidimensional nonlinear wave equations

    Zap. Nauchn. Sem. LOMI, 152 (1986),  55–66
  10. On the global solution of the Cauchy problem for the Yang–Mills–Higgs equations

    Zap. Nauchn. Sem. LOMI, 147 (1985),  18–48
  11. On some problems of vector analysis

    Zap. Nauchn. Sem. LOMI, 138 (1984),  65–85
  12. Spherically symmetric solutions of the euclidean Yang–Mills equations

    Zap. Nauchn. Sem. LOMI, 133 (1984),  126–132
  13. On Coleman's principle for finding the stationary points of quadratic functionals

    Dokl. Akad. Nauk SSSR, 270:3 (1983),  529–532
  14. Spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries

    Trudy Mat. Inst. Steklov., 159 (1983),  5–36
  15. On the Coleman's principle concerning the stationary points of invariant functionals

    Zap. Nauchn. Sem. LOMI, 127 (1983),  84–102
  16. Stationary solutions of the Navier–Stokes equations in periodic tubes

    Zap. Nauchn. Sem. LOMI, 115 (1982),  104–113
  17. On the coincidence of the spaces $\overset{\circ}J{}^1_2(\Omega)$ and $\widehat{\overset{\circ}J}{}^1_2(\Omega)$ for plane domains $\Omega$ with exits to the infinity

    Zap. Nauchn. Sem. LOMI, 110 (1981),  74–80
  18. Stability of solitons in $S^2$ in the nonlinear $\sigma$-model

    Dokl. Akad. Nauk SSSR, 246:4 (1979),  840–842
  19. The group-theoretic analysis of the Navier–Stokes equations in rotationally symmetric case and some new exact solutions

    Zap. Nauchn. Sem. LOMI, 84 (1979),  89–107
  20. Group analysis of the Euler and Navier–Stokes equations in the presence of rotational symmetry and new exact solutions of these equations

    Dokl. Akad. Nauk SSSR, 243:4 (1978),  901–904

  21. Letter to the Editor

    Zap. Nauchn. Sem. LOMI, 182 (1990),  168–169


© Steklov Math. Inst. of RAS, 2026