|
|
Publications in Math-Net.Ru
-
Universal extension operator
Funktsional. Anal. i Prilozhen., 59:3 (2025), 64–70
-
Geometry and analysis in nonlinear sigma models
Algebra i Analiz, 18:1 (2006), 3–33
-
Attractors of nonlinear evolution equations and their approximations
Algebra i Analiz, 2:1 (1990), 114–140
-
The Cauchy problem for a semilinear wave equation. II
Zap. Nauchn. Sem. LOMI, 182 (1990), 38–85
-
The Cauchy problem for a semilinear wave equation. III
Zap. Nauchn. Sem. LOMI, 181 (1990), 24–64
-
Some generalizations of the Strichartz–Brenner inequality
Algebra i Analiz, 1:3 (1989), 127–159
-
Estimates for Besov and Lizorkin–Triebel norms of solutions of the second-order linear hyperbolic equations
Zap. Nauchn. Sem. LOMI, 171 (1989), 106–162
-
The Cauchy problem for a semilinear wave equation. I
Zap. Nauchn. Sem. LOMI, 163 (1987), 76–104
-
Absence of time-periodic solutions to certain multidimensional nonlinear wave equations
Zap. Nauchn. Sem. LOMI, 152 (1986), 55–66
-
On the global solution of the Cauchy problem for the Yang–Mills–Higgs equations
Zap. Nauchn. Sem. LOMI, 147 (1985), 18–48
-
On some problems of vector analysis
Zap. Nauchn. Sem. LOMI, 138 (1984), 65–85
-
Spherically symmetric solutions of the euclidean Yang–Mills equations
Zap. Nauchn. Sem. LOMI, 133 (1984), 126–132
-
On Coleman's principle for finding the stationary points of quadratic functionals
Dokl. Akad. Nauk SSSR, 270:3 (1983), 529–532
-
Spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries
Trudy Mat. Inst. Steklov., 159 (1983), 5–36
-
On the Coleman's principle concerning the stationary points of invariant functionals
Zap. Nauchn. Sem. LOMI, 127 (1983), 84–102
-
Stationary solutions of the Navier–Stokes equations in periodic tubes
Zap. Nauchn. Sem. LOMI, 115 (1982), 104–113
-
On the coincidence of the spaces $\overset{\circ}J{}^1_2(\Omega)$ and $\widehat{\overset{\circ}J}{}^1_2(\Omega)$ for plane domains $\Omega$ with exits to the infinity
Zap. Nauchn. Sem. LOMI, 110 (1981), 74–80
-
Stability of solitons in $S^2$ in the nonlinear $\sigma$-model
Dokl. Akad. Nauk SSSR, 246:4 (1979), 840–842
-
The group-theoretic analysis of the Navier–Stokes equations in rotationally symmetric case and some new exact solutions
Zap. Nauchn. Sem. LOMI, 84 (1979), 89–107
-
Group analysis of the Euler and Navier–Stokes equations in the presence of rotational symmetry and new exact solutions of these equations
Dokl. Akad. Nauk SSSR, 243:4 (1978), 901–904
-
Letter to the Editor
Zap. Nauchn. Sem. LOMI, 182 (1990), 168–169
© , 2026