RUS  ENG
Full version
PEOPLE

Charakhch'yan Aleksandr Agasievich

Publications in Math-Net.Ru

  1. Calculation of plasma heating by charged products of thermonuclear reactions based on the simplified Fokker–Planck equation

    Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024),  881–892
  2. Numerical study of instability of medium interface during thermonuclear combustion of a cylindrical shelled microtarget

    Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023),  678–693
  3. Reflection of detonation wave from the symmetry plane within a cylindrical target for controlled thermonuclear fusion

    Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021),  1715–1733
  4. On a heat exchange problem under sharply changing external conditions

    Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  304–310
  5. Numerous experiment on impact compression of the mixture of graphite with water

    Fizika Goreniya i Vzryva, 53:4 (2017),  114–121
  6. Track method for the calculation of plasma heating by charged thermonuclear reaction products for axisymmetric flows

    Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016),  442–454
  7. On some features of plane waves of thermonuclear burn

    Prikl. Mekh. Tekh. Fiz., 56:1 (2015),  104–115
  8. On one problem of 2D regular grid generation based on mappings

    Mat. Model., 26:12 (2014),  48–64
  9. Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations

    Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013),  1894–1902
  10. On the role of heat conduction in the formation of a high-temperature plasma during counter collision of rarefaction waves of solid deuterium

    Prikl. Mekh. Tekh. Fiz., 52:4 (2011),  3–20
  11. On the mechanism of pressure increase with increasing porosity of the media compressed in conical and cylindrical targets

    Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2195–2207
  12. One method of producing a high-temperature dense plasma

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  15–24
  13. The use of models of mixture for analysis of shock-wave experiments with incomplete phase transformation

    TVT, 47:2 (2009),  254–261
  14. Continuous compression waves in the two-dimensional Riemann problem

    Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1853–1859
  15. Application of compound finite difference schemes for the calculation of time-dependent flows with narrow thermal layers

    Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007),  481–489
  16. Calculation of shock compression of porous media in conical solid-state targets with an outlet hole

    Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  913–931
  17. Use of conic targets in inertial confinement fusion

    Kvantovaya Elektronika, 35:9 (2005),  769–777
  18. Heating of a compressible liquid by a constant heat flux

    Prikl. Mekh. Tekh. Fiz., 44:2 (2003),  109–115
  19. The simulation of transformation of graphite to diamond under conditions of dynamic compression in a conic target

    TVT, 41:4 (2003),  515–526
  20. A barrier-type grid generator and its application to the computations of flow with moving boundaries

    Zh. Vychisl. Mat. Mat. Fiz., 43:6 (2003),  902–908
  21. Shock compression of a plate on a wedged–shaped target

    Prikl. Mekh. Tekh. Fiz., 42:1 (2001),  17–24
  22. Richtmyer–Meshkov instability of an interface between two media due to passage of two successive shocks

    Prikl. Mekh. Tekh. Fiz., 41:1 (2000),  28–37
  23. On algorithms for computing the Riemann problem by means of Godunov's scheme

    Zh. Vychisl. Mat. Mat. Fiz., 40:5 (2000),  782–796
  24. An elliptic grid generator based on quasi-one-dimensional grids

    Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  832–837
  25. An approach to reducing the computational cost of constructing curvilinear grids

    Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998),  344–350
  26. On mechanism of deuterium heating in laser action of conical targets

    Dokl. Akad. Nauk, 354:3 (1997),  324–326
  27. Calculation of high-velocity impact of thin foil upon conical target

    Mat. Model., 9:5 (1997),  48–60
  28. Stability of shaped-charge jets generated under pulsed action on conical targets

    Prikl. Mekh. Tekh. Fiz., 38:3 (1997),  10–13
  29. Numerical investigation of deuterium implosion in a conical target

    Prikl. Mekh. Tekh. Fiz., 35:4 (1994),  22–32
  30. Almost conservative difference schemes for the equations of gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 33:11 (1993),  1681–1692
  31. Calculation of the compression of deuterium in a conical target in the framework of the Navier–Stokes equations for two-temperature magnetohydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 33:5 (1993),  766–784
  32. Symmetric and asymmetric splitting schemes for the equations of gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 31:11 (1991),  1692–1705
  33. Computation of viscous plasma heating under compression by a striker in a conical target

    Zh. Vychisl. Mat. Mat. Fiz., 30:5 (1990),  767–779
  34. A numerical simulation scheme for subsonic flows in a viscous compressible gas

    Zh. Vychisl. Mat. Mat. Fiz., 28:12 (1988),  1858–1866
  35. Curvilinear grids of convex quadrilaterals

    Zh. Vychisl. Mat. Mat. Fiz., 28:4 (1988),  503–514
  36. The effect of false cumulation of Godunov's scheme on moving grids

    Zh. Vychisl. Mat. Mat. Fiz., 28:1 (1988),  142–146
  37. An algorithm for constructing curvilinear grids consisting of convex quadrangles

    Dokl. Akad. Nauk SSSR, 295:2 (1987),  280–283
  38. A splitting scheme for equations of gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 25:12 (1985),  1898–1902
  39. A modification of Godunov's scheme with Euler variables

    Zh. Vychisl. Mat. Mat. Fiz., 23:5 (1983),  1240–1244
  40. Numerical methods in radiative gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 20:5 (1980),  1249–1265
  41. A relation between the products of orthogonal polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  765–767
  42. A version of the completely conservative scheme for the gasdynamic equations

    Zh. Vychisl. Mat. Mat. Fiz., 19:1 (1979),  259–263
  43. A numerical scheme for time-dependent problems with non-stationary radiation transfer

    Zh. Vychisl. Mat. Mat. Fiz., 18:2 (1978),  499–504
  44. Comparison of calculations of axisymmetrical radiative gas flows

    Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977),  1077–1081
  45. A certain numerical scheme for the transport equation on an opaque net

    Zh. Vychisl. Mat. Mat. Fiz., 15:4 (1975),  999–1005

  46. К 95-летию со дня рождения профессора Юрия Дмитриевича Шмыглевского (1926–2007)

    Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021),  1587–1592
  47. Памяти Владимира Михайловича Кривцова (1948–2019)

    Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019),  1998–2002
  48. In memory of professor Yurii Dmitrievich Shmyglevskii (1926–2007)

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  928–936
  49. In memory of Sergeĭ Aleksandrovich Ivanenko

    Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004),  764–768
  50. Remark on the paper “On a decomposition scheme for the equations of gas dynamics” (a letter to the editor)

    Zh. Vychisl. Mat. Mat. Fiz., 26:5 (1986),  793–794


© Steklov Math. Inst. of RAS, 2026