RUS  ENG
Full version
PEOPLE

Maksimov Vyacheslav Ivanovich

Publications in Math-Net.Ru

  1. On an algorithm of tracking an input action in a system of differential equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:2 (2025),  141–154
  2. On dynamic reconstruction of a disturbances in distributed parameter systems

    Russian Universities Reports. Mathematics, 30:150 (2025),  97–109
  3. Application of locally regularized extremal shift to the problem of realization of a prescribed motion

    J. Inverse Ill-Posed Probl., 32:5 (2024),  1033–1049
  4. Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  191–206
  5. On the International Conference “System Analysis: Modeling and Control” dedicated to the 75th birthday of A. V. Kryazhimskii

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  300–302
  6. On the identification of control failures by the dynamic regularization method

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  116–129
  7. On modeling a solution of systems with constant delay using controlled models

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  39–49
  8. On the reconstruction of an input disturbance in a reaction–diffusion system

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  938–948
  9. Reconstruction of input disturbances in parabolic inclusions unsolved for the derivative

    Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022),  768–776
  10. Feedback in a Control Problem for a System with Discontinuous Right-Hand Side

    Differ. Uravn., 57:4 (2021),  552–571
  11. On dynamical input reconstruction in a distributed second order equation

    J. Inverse Ill-Posed Probl., 29:5 (2021),  707–719
  12. Stable Boundary Control of a Parabolic Equation

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  7–18
  13. Reconstruction of an Unbounded Input of a System of Differential Equations

    Trudy Mat. Inst. Steklova, 315 (2021),  160–171
  14. Dynamic discrepancy method in the problem of reconstructing the input of a system with time delay control

    Zh. Vychisl. Mat. Mat. Fiz., 61:3 (2021),  382–390
  15. On an algorithm for the reconstruction of a perturbation in a nonlinear system

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  156–166
  16. Tracking the Solution of a Linear Parabolic Equation Using Feedback Laws

    Trudy Mat. Inst. Steklova, 308 (2020),  222–231
  17. Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  533–552
  18. Extremal Shift in a Problem of Tracking a Solution of an Operator Differential Equation

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  141–152
  19. Tracking the Solution of a Nonlinear System with Partly Measured Coordinates of the State Vector

    Trudy Mat. Inst. Steklova, 304 (2019),  235–251
  20. Reconstruction of disturbances in a nonlinear system from measurements of some of the state-vector coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019),  1836–1845
  21. Input reconstruction in a dynamic system from measurements of a part of phase coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019),  752–761
  22. Tracking the solution to a nonlinear distributed differential equation by feedback laws

    Sib. Zh. Vychisl. Mat., 21:2 (2018),  201–213
  23. On the problem of input reconstruction in a nonlinear system with constant delay

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  121–130
  24. On a control problem for a linear system with measurements of a part of phase coordinates

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:1 (2017),  195–205
  25. On the solvability of the problem of guaranteed package guidance to a system of target sets

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017),  344–354
  26. An algorithm for dynamic reconstruction of the right-hand side of a second-order equation with distributed parameters

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1255–1269
  27. On a problem of linear system control under incomplete information about the phase coordinates

    Avtomat. i Telemekh., 2016, no. 6,  3–21
  28. On a guaranteed guidance problem under incomplete information

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  199–210
  29. On the stable tracking problem for a solution of a differential equation in a Hilbert space

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  63–70
  30. Infinite-horizon boundary control of distributed systems

    Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016),  16–28
  31. On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data

    CMFD, 58 (2015),  111–127
  32. On a modification of the extremal shift method for a second-order differential equation in a Hilbert space

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  150–159
  33. Calculation of the derivative of an inaccurately defined function by means of feedback laws

    Trudy Mat. Inst. Steklova, 291 (2015),  231–243
  34. Dynamic reconstruction of the right-hand side of a hyperbolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015),  1008–1019
  35. On reconstruction of an input for parabolic equation on infinite time interval

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  30–41
  36. On a control algorithm for a linear system with measurements of a part of coordinates of the phase vector

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  218–230
  37. On an input recovery problem in a linear delay system

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  180–192
  38. On the Combination of the Reconstruction Processes and Guaranteed Control

    Avtomat. i Telemekh., 2013, no. 8,  5–21
  39. On one algorithm of the dynamical reconstruction of the right-hand side of a parabolic equation

    Sib. Zh. Ind. Mat., 16:4 (2013),  94–110
  40. On designing a reconstruction-control algorithm for an ecological-economic model

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  142–154
  41. On the application of finite-dimensional controlled models in the problem of input reconstruction in a linear delay system

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  196–204
  42. On tracking solutions of parabolic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1,  40–48
  43. On a reconstruction algorithm for the trajectory and control in a delay system

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  109–122
  44. An algorithm for reconstructing the intensity of a source function

    Trudy Mat. Inst. Steklova, 277 (2012),  178–191
  45. On the reconstruction of inputs in linear parabolic equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  125–135
  46. Some algorithms for the dynamic reconstruction of inputs

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  129–161
  47. An algorithm for dynamic reconstruction of input disturbances from observations of some of the coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1007–1017
  48. Об одном алгоритме реконструкции управления динамической системы

    Matem. Mod. Kraev. Zadachi, 2 (2010),  170–173
  49. Об одном алгоритме решения задачи оптимального управления в гильбертовом пространстве

    Matem. Mod. Kraev. Zadachi, 2 (2010),  29–32
  50. Tracking a reference solution of a control system of phase field equations

    Trudy Mat. Inst. Steklova, 271 (2010),  148–158
  51. N. N. Krasovskii's extremal shift method and problems of boundary control

    Avtomat. i Telemekh., 2009, no. 4,  18–30
  52. On an optimization model of the international market for greenhouse gases emissions permits

    Mat. Model., 21:5 (2009),  103–113
  53. On one problem of tracking a given trajectory

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  195–203
  54. On reconstruction of unknown characteristics of a distributed system using a regularized extremal shift

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  170–184
  55. Method of Controlled Models in the Problem of Reconstructing a Boundary Input

    Trudy Mat. Inst. Steklova, 262 (2008),  178–186
  56. On the application of regularized extremal shift to the investigation of some problems of dynamical identification and robust control for systems with delay

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  83–86
  57. Reconstruction of the right-hand side of a parabolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008),  674–680
  58. A control problem under incomplete information

    Avtomat. i Telemekh., 2006, no. 3,  131–142
  59. Dynamic inversion problems in systems with aftereffect

    Izv. IMI UdGU, 2006, no. 3(37),  93–94
  60. Extremal shift method in the problems of identification and control of differential inclusions with subdifferentials

    Izv. IMI UdGU, 2006, no. 3(37),  89–92
  61. A solution algorithm for problems of optimal control in Hilberts space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 110 (2006),  155–188
  62. Dynamical state reconstruction and guaranteeing control for a system of parabolic equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:1 (2006),  157–172
  63. Reconstruction of boundary disturbances: the case of Neumann boundary conditions

    Trudy Inst. Mat. i Mekh. UrO RAN, 11:1 (2005),  160–176
  64. An inverse problem for a parabolic variational inequality

    Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  1983–1992
  65. The dynamical decoupled method in the input reconstruction problem

    Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004),  297–307
  66. Realization of a Predefined Motion in a Hereditary System

    Avtomat. i Telemekh., 2003, no. 5,  83–92
  67. A Boundary Control Problem for a Nonlinear Parabolic Equation

    Differ. Uravn., 39:11 (2003),  1543–1549
  68. Dynamic Reconstruction of Unbounded Controls in a Parabolic Equation

    Differ. Uravn., 39:1 (2003),  23–29
  69. О реконструкции управлений в параболических уравнениях при неточно известной правой части

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 8,  132–145
  70. Dynamic Input Reconstruction for a Nonlinear Time-Delay System

    Avtomat. i Telemekh., 2002, no. 2,  3–13
  71. Control modeling for quasilinear parabolic equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  227–237
  72. An Extremal Problem in a Hilbert Space

    Differ. Uravn., 37:1 (2001),  126–127
  73. Minimax control problem for a parabolic variational inequality

    Zh. Vychisl. Mat. Mat. Fiz., 41:10 (2001),  1521–1531
  74. A positional control problem for a nonlinear parabolic system

    Differ. Uravn., 36:8 (2000),  1085–1092
  75. Dynamic inverse problems for parabolic systems

    Differ. Uravn., 36:5 (2000),  579–597
  76. The principle of extremal shift in a problem of solving operator equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:1 (2000),  141–149
  77. On the dynamic reconstruction of controls in a differential equation with memory

    Differ. Uravn., 35:6 (1999),  813–821
  78. On a dynamic solution of equations in Banach spaces

    Trudy Mat. Inst. Steklova, 220 (1998),  195–209
  79. An iterative procedure for solving a control problem with phase constraints

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1484–1489
  80. Dynamical reconstruction of controls in parabolic systems

    Zh. Vychisl. Mat. Mat. Fiz., 38:3 (1998),  398–412
  81. On reconstruction of inputs in parabolic systems

    Mat. Model., 9:3 (1997),  51–72
  82. Reconstruction of extremal perturbations in parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 37:3 (1997),  291–301
  83. On the problem of reconstructing the intensity of point sources from the results of sensor observations

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  201–216
  84. Finite-dimensional input approximation in parabolic variational inequalities

    Trudy Mat. Inst. Steklov., 211 (1995),  326–337
  85. Finite-dimensional approximation of the inputs of hyperbolic variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 35:11 (1995),  1615–1629
  86. Numerical solution of some inverse problems of heat conduction

    Avtomat. i Telemekh., 1993, no. 2,  83–91
  87. A positional control problem in nonlinear parabolic systems

    Differ. Uravn., 28:6 (1992),  961–967
  88. On the modeling of control in parabolic variational inequalities

    Differ. Uravn., 27:9 (1991),  1603–1609
  89. On the stable solution of inverse problems for nonlinear distributed systems. II

    Differ. Uravn., 27:4 (1991),  597–603
  90. On the stable solution of inverse problems for nonlinear distributed systems. I

    Differ. Uravn., 26:12 (1990),  2059–2067
  91. Modeling controls and coefficients in parabolic evolution systems

    Differ. Uravn., 26:2 (1990),  237–246
  92. Positional modeling of infinite controls for nonlinear distributed systems having dissipation

    Avtomat. i Telemekh., 1988, no. 4,  22–30
  93. A numerical method for finding approximate solutions of parabolic variational inequalities

    Differ. Uravn., 24:11 (1988),  1994–2004
  94. Existence of strong solutions of differential equations in a Hilbert space

    Differ. Uravn., 24:3 (1988),  398–407
  95. Positional modeling of controls and initial functions for Volterra systems

    Differ. Uravn., 23:4 (1987),  618–629
  96. Dynamic regularization in certain systems not solved with respect to the derivative

    Differ. Uravn., 21:2 (1985),  305–315
  97. Approximation of control systems of neutral type by ordinary control systems

    Differ. Uravn., 20:4 (1984),  585–593

  98. In memory of Arkady Viktorovich Kryazhimskiy (1949-2014)

    Ural Math. J., 2:2 (2016),  3–15
  99. On the 90th birthday of Sergei Nikanorovich Shimanov

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  5–11
  100. To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  5–6
  101. Yurii Sergeevich Osipov (a tribute in honor of his seventieth birthday)

    Differ. Uravn., 42:7 (2006),  867–873
  102. On the 70th birthday of academician Yurii Sergeevich Osipov

    Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006),  1539–1544


© Steklov Math. Inst. of RAS, 2026