RUS  ENG
Full version
PEOPLE

Ergashev Tuhtasin Gulamjanovich

Publications in Math-Net.Ru

  1. Expansions of Kampé de Fériet hypergeometric functions

    Chelyab. Fiz.-Mat. Zh., 10:3 (2025),  513–526
  2. Confluent hypergeometric functions and their application to the solution of Dirichlet problem for the Helmholtz equation with three singular coefficients

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025),  407–429
  3. Multiple Euler integral representations for the Kampé de Fériet functions

    Chelyab. Fiz.-Mat. Zh., 8:4 (2023),  553–567
  4. Coefficient inverse problem for Whitham type two-dimensional differential equation with impulse effects

    Chelyab. Fiz.-Mat. Zh., 8:2 (2023),  238–248
  5. Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima

    Chelyab. Fiz.-Mat. Zh., 7:3 (2022),  312–325
  6. A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 7,  58–72
  7. Expansion formulas for hypergeometric functions of two variables

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 201 (2021),  80–97
  8. The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 7,  81–91
  9. Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1,  81–96
  10. Potentials for a three-dimensional elliptic equation with one singular coefficient and their application

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021),  257–285
  11. Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients

    J. Sib. Fed. Univ. Math. Phys., 13:1 (2020),  48–57
  12. Holmgren problem for elliptic equation with singular coefficients

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 32:3 (2020),  114–126
  13. Poincare–Tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 65,  5–21
  14. Holmgren problem for multudimensional elliptic equation with two singular coefficients

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 63,  47–59
  15. Dirichlet problem for the multudimensional Helmholtz equation with one singular coefficient

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 62,  55–67
  16. Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation

    Ufimsk. Mat. Zh., 10:4 (2018),  111–122
  17. Confluent hypergeometric functions of many variables and their application to the finding of fundamental solutions of the generalized helmholtz equation with singular coefficients

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 55,  45–56
  18. The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 50,  45–56
  19. Generalized solutions of the degenerate hyperbolic equation of the second kind with a spectral parameter

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46,  41–49


© Steklov Math. Inst. of RAS, 2026