RUS  ENG
Full version
PEOPLE

Khalfina Nina Mikhailovna

Publications in Math-Net.Ru

  1. Application of the Chauvenet test to detection of overliers in observations connected in homogeneous Markov chain

    Zap. Nauchn. Sem. POMI, 278 (2001),  275–284
  2. Application of the Chauvenet test to detection of overliers in observations, connected in homogeneous Markov chain

    Zap. Nauchn. Sem. POMI, 260 (1999),  278–289
  3. Detection of gross errors by the Chauvenet test for observations connected in a homogeneous Markov chain

    Zap. Nauchn. Sem. POMI, 207 (1993),  137–142
  4. Detection of overliers with the Chauven test in observations connected in homogenious Markov chain

    Zap. Nauchn. Sem. LOMI, 177 (1989),  163–169
  5. Rejection of the outlying observations with the test of Chavenet

    Zap. Nauchn. Sem. LOMI, 153 (1986),  153–159
  6. Some asymptotic results connected with the Chauvenet test for case of multidimensional random variables

    Zap. Nauchn. Sem. LOMI, 130 (1983),  181–189
  7. Asymptitic results related to the Chauvenet test for case of multidimensional random variables

    Zap. Nauchn. Sem. LOMI, 98 (1980),  149–159
  8. Some asymptotical results related to the Chauvenet test

    Teor. Veroyatnost. i Primenen., 23:3 (1978),  615–619
  9. On a robust version of the probability ratio test

    Teor. Veroyatnost. i Primenen., 20:1 (1975),  203–206
  10. On the $\varepsilon$-minimax character of the hotelling $T^2$ test for nonnormal distributions

    Mat. Zametki, 11:5 (1972),  527–536
  11. The $\varepsilon$-minimax character of the Hotelling $T^2$ test for distributions that are close to normal

    Zap. Nauchn. Sem. LOMI, 29 (1972),  102–112
  12. The minimax character of a complex analogue of the $R^2$-test

    Trudy Mat. Inst. Steklov., 111 (1970),  12–22
  13. The minimax properties of the complex analogue of the $T^2$ test

    Mat. Zametki, 2:6 (1967),  635–644
  14. On the asymptotic behaviour of confluent functions

    Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967),  661–667
  15. Statistical problems in the interpretation of seismic data

    Trudy Mat. Inst. Steklov., 79 (1965),  160–181


© Steklov Math. Inst. of RAS, 2026