RUS  ENG
Full version
PEOPLE

Tkachev Dmitry Leonidovich

Publications in Math-Net.Ru

  1. Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model)

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  823–851
  2. Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1269–1289
  3. The spectrum and Lyapunov linear instability of the stationary state for polymer fluid flows: the Vinogradov–Pokrovskii model

    Sibirsk. Mat. Zh., 64:2 (2023),  423–440
  4. Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls

    Mat. Sb., 213:3 (2022),  3–20
  5. Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости

    Mat. Tr., 24:1 (2021),  35–51
  6. An MHD model of an incompressible polymeric fluid: linear instability of a steady state

    Sib. Zh. Ind. Mat., 23:3 (2020),  16–30
  7. Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid

    Mat. Sb., 211:7 (2020),  3–23
  8. Asymptotic formula for the spectrum of the linear problem describing periodic polymer flows in the infinite channel

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  39–51
  9. Local solvability of the problem of the van der Waals gas flow around an infinite plane wedge in the case of a weak shock wave

    Sibirsk. Mat. Zh., 59:6 (2018),  1214–1239
  10. Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge

    Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018),  108–122
  11. Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave

    Mat. Tr., 19:2 (2016),  3–41
  12. Feasibility analysis of neutral stability for shock waves in a nonideal gas flow about a wedge

    Zhurnal Tekhnicheskoi Fiziki, 85:7 (2015),  20–30
  13. Linear instability of the solutions in mathematical model that describe flows of polymer in an infinite channel

    Yakutian Mathematical Journal, 22:2 (2015),  16–27
  14. Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  850–875
  15. Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations

    Sib. Zh. Ind. Mat., 17:3 (2014),  13–25
  16. Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients

    Zh. Vychisl. Mat. Mat. Fiz., 52:10 (2012),  1866–1882
  17. Justification of the stabilization method for a mathematical model of charge transport in semiconductors

    Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1495–1517
  18. Stability of a supersonic flow about a wedge with weak shock wave

    Mat. Sb., 200:2 (2009),  3–30
  19. A mixed problem for the wave equation in a domain with a corner (the scalar case)

    Sibirsk. Mat. Zh., 30:3 (1989),  16–23


© Steklov Math. Inst. of RAS, 2026