RUS  ENG
Full version
PEOPLE

Bocharov Pavel Petrovich

Publications in Math-Net.Ru

  1. Analysis of the multi-server Markov queuing system with unlimited buffer and negative customers

    Avtomat. i Telemekh., 2007, no. 1,  93–104
  2. On servers in series with losses in descrete time

    Avtomat. i Telemekh., 2006, no. 9,  158–171
  3. $\mathrm{MAP}/\Gamma/1/r$ system with a large service time variation coefficient

    Avtomat. i Telemekh., 2005, no. 11,  89–98
  4. A single-server queueing system with background customers

    Avtomat. i Telemekh., 2005, no. 6,  74–88
  5. A single-server finite-capacity queueing system with Markov flow and discrete-time service

    Avtomat. i Telemekh., 2005, no. 2,  73–91
  6. Exponential queuing network with dependent servicing, negative customers, and modification of the customer type

    Avtomat. i Telemekh., 2004, no. 7,  35–59
  7. Decomposition of Queueing Networks with Dependent Service and Negative Customers

    Avtomat. i Telemekh., 2004, no. 1,  97–116
  8. G-Networks: Development of the Theory of Multiplicative Networks

    Avtomat. i Telemekh., 2003, no. 5,  46–74
  9. The Stationary Characteristics of the $G/MSP/1/r$ Queueing System

    Avtomat. i Telemekh., 2003, no. 2,  127–142
  10. A Queueing Network with Random-Delay Signals

    Avtomat. i Telemekh., 2002, no. 9,  85–96
  11. On a Retrial Single-Server Queueing System with Finite Buffer and Multivariate Poisson Flow

    Probl. Peredachi Inf., 37:4 (2001),  130–140
  12. On a Retrial Single-Server Queueing System with Finite Buffer and Poisson Flow

    Probl. Peredachi Inf., 37:3 (2001),  67–81
  13. A single-server retrial queueing system with a multidimensional Poisson flow

    Avtomat. i Telemekh., 2000, no. 11,  123–138
  14. Stationary probabilities of the states of the retrial system $MAP/G/1/r$ with priority servicing of primary customers

    Avtomat. i Telemekh., 2000, no. 8,  68–78
  15. A matrix-multiplicative solution for a single-line system with server vacations, a finite, retrial queue, and phase-type distributions

    Avtomat. i Telemekh., 1999, no. 9,  72–91
  16. Analysis of a finite queue with a Markov flow and arbitrary service that depends on the number of customers in the system

    Avtomat. i Telemekh., 1998, no. 10,  64–75
  17. The Study of a $MAP_2/G_2/1/r$ Queuing System with Absolute Priority

    Avtomat. i Telemekh., 1997, no. 11,  102–117
  18. Stationary Distribution of a Finite Queue with Recursive Input Flow and Markovian Service Discipline

    Avtomat. i Telemekh., 1996, no. 9,  66–78
  19. A finite queue with a Markov input dependent on the state of the system and a random service discipline

    Avtomat. i Telemekh., 1995, no. 12,  60–70
  20. Stationary distribution of a queue in a finite-capacity queueing system with group arrival and queueing time of phase type

    Avtomat. i Telemekh., 1994, no. 9,  106–119
  21. Analysis of two bounded queues with relative priority in a single-server queueing system with phase-type distributions

    Avtomat. i Telemekh., 1993, no. 4,  96–107
  22. Execution Prediction for Complex Program Set at the Parallel Computing Systems

    Avtomat. i Telemekh., 1992, no. 12,  148–155
  23. Analysis of a queue with phase-type distributions and inverse servicing discipline with interruptions

    Avtomat. i Telemekh., 1992, no. 11,  83–92
  24. Matrix-geometric distribution of a queue under the LCFS discipline with interruptions and phase-type distributions

    Avtomat. i Telemekh., 1991, no. 9,  112–122
  25. Analysis of storing and filing models at a switching center with group recording of messages

    Avtomat. i Telemekh., 1990, no. 7,  72–80
  26. On computing the characteristics of a two-node network with phase distributions and two types of entries

    Avtomat. i Telemekh., 1989, no. 5,  169–178
  27. On a one-line serving system having a finite capacity with phase distributions and absolute priority

    Avtomat. i Telemekh., 1987, no. 12,  93–103
  28. An approximate design of open-loop nonexponential service networks of finite capacity with losses or interlocks

    Avtomat. i Telemekh., 1987, no. 1,  55–65
  29. Ways to analyze and design service systems with phase distributions

    Avtomat. i Telemekh., 1986, no. 5,  5–23
  30. A queueing system of limited capacity with distributions of phase type depending on the queue state

    Avtomat. i Telemekh., 1985, no. 10,  31–38
  31. On a multi-phase system with losses

    Avtomat. i Telemekh., 1984, no. 10,  60–65
  32. On Some Queueing Systems of Finite Capacity

    Probl. Peredachi Inf., 13:4 (1977),  96–104
  33. A One-Line Queueing System with a Limited Number of Waiting Places and Priorities

    Probl. Peredachi Inf., 6:3 (1970),  70–77
  34. A Single-Channel Poisson–Erlang System with a Limited Number of Waiting Positions and Relative Priority

    Probl. Peredachi Inf., 5:4 (1969),  50–58
  35. An Unreliable Unit with Requests of Several Types and Priority Service of a Request Interrupted by a Breakdown

    Probl. Peredachi Inf., 4:2 (1968),  53–61


© Steklov Math. Inst. of RAS, 2026