RUS  ENG
Full version
PEOPLE

Khalkhuzhaev Akhmad Miyassarovich

Publications in Math-Net.Ru

  1. On the infinite number of eigenvalues of the two-particle Schrödinger operator on a lattice

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 12,  3–11
  2. Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10,  77–89
  3. Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9,  3–19
  4. Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 2,  3–25
  5. On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator

    Mat. Zametki, 114:5 (2023),  643–658
  6. On the discrete spectrum of the Schrödinger operator using the 2+1 fermionic trimer on the lattice

    Nanosystems: Physics, Chemistry, Mathematics, 14:5 (2023),  518–529
  7. Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice

    Nanosystems: Physics, Chemistry, Mathematics, 12:6 (2021),  657–663
  8. Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 9,  76–88
  9. Bound states of the Schrödinger operator of a system of three bosons on a lattice

    TMF, 188:1 (2016),  36–48
  10. Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator

    TMF, 171:3 (2012),  438–451
  11. The number of eigenvalues of the two-particle discrete Schrödinger operator

    TMF, 158:2 (2009),  263–276
  12. Spectrum of the two-particle Schrödinger operator on a lattice

    TMF, 155:2 (2008),  287–300


© Steklov Math. Inst. of RAS, 2026