|
|
Publications in Math-Net.Ru
-
On the infinite number of eigenvalues of the two-particle Schrödinger operator on a lattice
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 12, 3–11
-
Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10, 77–89
-
Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9, 3–19
-
Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 2, 3–25
-
On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator
Mat. Zametki, 114:5 (2023), 643–658
-
On the discrete spectrum of the Schrödinger operator using the 2+1 fermionic trimer on the lattice
Nanosystems: Physics, Chemistry, Mathematics, 14:5 (2023), 518–529
-
Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice
Nanosystems: Physics, Chemistry, Mathematics, 12:6 (2021), 657–663
-
Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 9, 76–88
-
Bound states of the Schrödinger operator of a system of three bosons on a lattice
TMF, 188:1 (2016), 36–48
-
Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator
TMF, 171:3 (2012), 438–451
-
The number of eigenvalues of the two-particle discrete Schrödinger
operator
TMF, 158:2 (2009), 263–276
-
Spectrum of the two-particle Schrödinger operator on a lattice
TMF, 155:2 (2008), 287–300
© , 2026