RUS  ENG
Full version
PEOPLE

Krivonosov Leonid Nikolaevich

Publications in Math-Net.Ru

  1. (Anti) self-dual Einstein metrics of zero signature, their Petrov classes and connection with Kahler and para-Kahler structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9,  39–53
  2. Hermitian metrics with (anti-)self-dual Riemann tensor

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021),  616–633
  3. Specificity of Petrov classification of (anti-)self-dual zero signature metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9,  56–67
  4. The main theorem for (anti)self-dual conformal torsion-free connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 2,  29–38
  5. Duality equations on a 4-manifold of conformal torsion-free connection and some of their solutions for the zero signature

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019),  207–228
  6. Conformal connection with scalar curvature

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018),  22–35
  7. The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space

    Sib. J. Pure and Appl. Math., 17:2 (2017),  21–38
  8. Yang–Mills equations on conformally connected torsion-free 4-manifolds with different signatures

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017),  633–650
  9. The complete solution of the Yang-Mills equations for centrally symmetric metric in the presence of electromagnetic field

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015),  462–473
  10. Solving Yang–Mills equations for 4-metrics of Petrov types II, N, III

    J. Sib. Fed. Univ. Math. Phys., 7:4 (2014),  472–488
  11. Extremal curves in the conformal space and in an associated bundle

    J. Sib. Fed. Univ. Math. Phys., 7:1 (2014),  68–78
  12. Gauge-invariant Tensors of 4-Manifold with Conformal Torsion-free Connection and their Applications for Modeling of Space-time

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  180–198
  13. Purely time-dependent solutions to the Yang–Mills equations on a $4$-dimensional manifold with conformal torsion-free connection

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  40–52
  14. Einstein's equations on a $4$-manifold of conformal torsion-free connection

    J. Sib. Fed. Univ. Math. Phys., 5:3 (2012),  393–408
  15. The full decision of Young–Mills equations for the central-symmetric metrics

    J. Sib. Fed. Univ. Math. Phys., 4:3 (2011),  350–362
  16. The relationship between the Einstein and Yang–Mills equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 9,  69–74
  17. Connection of Young-Mills Equations with Einstein and Maxwell's Equations

    J. Sib. Fed. Univ. Math. Phys., 2:4 (2009),  432–448
  18. Geometric interpretation of a system of Bers–Gelbart equations and similar systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 6,  75–77
  19. Two topological invariants of metrizable spaces and their connection with dimension

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 7,  46–50
  20. A certain extension of metric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 4,  33–36
  21. Localized sequences in metric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 4,  45–54
  22. A certain method of prescribing a pre-Hilbertian norm

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 1,  52–54
  23. Principal nets of parallel and normal correspondence of surfaces in $E_4$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 1,  81–91
  24. Surfaces in $E_4$ generating a sequence of evolute surfaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 6,  74–84
  25. Parallel and normal correspondence of two-dimensional surfaces in the four-dimensional Euclidean space $E_4$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 5,  78–87
  26. On circles of conformal space

    Uchenye Zapiski Kazanskogo Universiteta, 123:1 (1963),  78–102

  27. Letter to the editors

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 3,  127


© Steklov Math. Inst. of RAS, 2026