RUS  ENG
Full version
PEOPLE

Frolov Andrey Nikolaevich

Publications in Math-Net.Ru

  1. Computable linear orders and the Ershov hierarchy

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1,  85–89
  2. Spectral universality of linear orders with one binary relation

    Sibirsk. Mat. Zh., 61:3 (2020),  587–593
  3. Punctual copies of algebraic structures

    Sibirsk. Mat. Zh., 60:6 (2019),  1271–1285
  4. Computable presentability of countable linear orders

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 158 (2018),  81–115
  5. Degree spectra of structures

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 158 (2018),  23–39
  6. Computable linear orders and limitwise monotonic functions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  70–105
  7. Computable linear orders and the Ershov hierarchy

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1,  67–74
  8. Computability of distributive lattices

    Sibirsk. Mat. Zh., 58:6 (2017),  1236–1251
  9. On a computable presentation of low linear orders

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:4 (2017),  518–528
  10. Degree spectra of the block relation of $1$-computable linear orders

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:3 (2017),  296–305
  11. Effective categoricity of computable linear orderings

    Algebra Logika, 54:5 (2015),  638–642
  12. A note on $\Delta_2^0$-spectra of linear orderings and degree spectra of the successor relation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 11,  74–78
  13. Ranges of $\eta$-functions of $\eta$-like linear orderings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 3,  96–99
  14. Linear orderings. Coding theorems

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  142–151
  15. Presentations of the successor relation of computably linear ordering

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 7,  73–85
  16. Linear orderings of low degree

    Sibirsk. Mat. Zh., 51:5 (2010),  1147–1162
  17. Computability on linear orderings enriched with predicates

    Algebra Logika, 48:5 (2009),  549–563
  18. $\Delta_2^0$-Copies of Linear Orderings

    Algebra Logika, 45:3 (2006),  354–370
  19. SET-1 reducibility in the class of computable sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 8,  69–75
  20. Set-theoretic reducibilities in a lattice of sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 1,  57–67
  21. Set-theoretic structure of computable sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10,  70–76


© Steklov Math. Inst. of RAS, 2026