|
|
Publications in Math-Net.Ru
-
Computable linear orders and the Ershov hierarchy
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1, 85–89
-
Spectral universality of linear orders with one binary relation
Sibirsk. Mat. Zh., 61:3 (2020), 587–593
-
Punctual copies of algebraic structures
Sibirsk. Mat. Zh., 60:6 (2019), 1271–1285
-
Computable presentability of countable linear orders
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 158 (2018), 81–115
-
Degree spectra of structures
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 158 (2018), 23–39
-
Computable linear orders and limitwise monotonic functions
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018), 70–105
-
Computable linear orders and the Ershov hierarchy
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 67–74
-
Computability of distributive lattices
Sibirsk. Mat. Zh., 58:6 (2017), 1236–1251
-
On a computable presentation of low linear orders
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:4 (2017), 518–528
-
Degree spectra of the block relation of $1$-computable linear orders
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:3 (2017), 296–305
-
Effective categoricity of computable linear orderings
Algebra Logika, 54:5 (2015), 638–642
-
A note on $\Delta_2^0$-spectra of linear orderings and degree spectra of the successor relation
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 11, 74–78
-
Ranges of $\eta$-functions of $\eta$-like linear orderings
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 3, 96–99
-
Linear orderings. Coding theorems
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 142–151
-
Presentations of the successor relation of computably linear ordering
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 7, 73–85
-
Linear orderings of low degree
Sibirsk. Mat. Zh., 51:5 (2010), 1147–1162
-
Computability on linear orderings enriched with predicates
Algebra Logika, 48:5 (2009), 549–563
-
$\Delta_2^0$-Copies of Linear Orderings
Algebra Logika, 45:3 (2006), 354–370
-
SET-1 reducibility in the class of computable sets
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 8, 69–75
-
Set-theoretic reducibilities in a lattice of sets
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 1, 57–67
-
Set-theoretic structure of computable sets
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10, 70–76
© , 2026