RUS  ENG
Full version
PEOPLE

Zamyshlyaeva Alyona Aleksandrovna

Publications in Math-Net.Ru

  1. Nonlinear analysis of beam on an elastic polymeric foundation: a study on transient and frequency responses

    J. Comp. Eng. Math., 12:2 (2025),  51–62
  2. Noise reduction in digital images based on original RAW files using neural networks

    J. Comp. Eng. Math., 11:4 (2024),  64–74
  3. Algorithm for numerical solution of the optimal control problem for one hydrodynamics model using the COBYLA method

    J. Comp. Eng. Math., 11:4 (2024),  40–47
  4. Investigation of the transient responses of a beam on an elastic polymeric foundation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024),  97–105
  5. Optimal control of solutions to the Cauchy problem for an incomplete semilinear Sobolev type equation of the second order

    J. Comp. Eng. Math., 10:3 (2023),  24–37
  6. Parameters identification algorithm for the SUSUPLUME air pollution propagation model

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:3 (2023),  74–82
  7. Algorithm for numerical solution of the optimal control problem for the mathematical model of shallow water wave propagation

    J. Comp. Eng. Math., 9:2 (2022),  73–80
  8. Processing of information on recovery of the external force parameter for the mathematical model of ion-acoustic waves in plasma

    J. Comp. Eng. Math., 9:1 (2022),  59–72
  9. Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:3 (2022),  38–44
  10. Development of the theory of optimal dynamic measurement

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  19–33
  11. Semilinear Sobolev type mathematical models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  43–59
  12. Reconstruction of a dynamically distorted signal based on the theory of optimal dynamic measurements

    Avtomat. i Telemekh., 2021, no. 12,  125–137
  13. Numerical investigation of the inverse problem for the Boussinesq – Love mathematical model on a graph

    J. Comp. Eng. Math., 8:3 (2021),  71–85
  14. Numerical investigation of the inital-final problem for the Boussinesq – Love equation on a geometrical graph

    J. Comp. Eng. Math., 8:1 (2021),  15–28
  15. The optimal measurements theory as a new paradigm in the metrology

    J. Comp. Eng. Math., 7:1 (2020),  3–23
  16. Numerical study of the susuplume air pollution model

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  5–18
  17. Optimal control in linear Sobolev type mathematical models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020),  5–27
  18. Numerical solution of optimal control problem for the model of linear waves in plasma

    J. Comp. Eng. Math., 6:4 (2019),  69–78
  19. Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:4 (2019),  26–31
  20. Inverse problem for Sobolev type mathematical models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  25–36
  21. Optimal control of solutions to the Showalter–Sidorov problem in a model of linear waves in plasma

    J. Comp. Eng. Math., 5:4 (2018),  46–57
  22. Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise"

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:3 (2018),  103–117
  23. Stochastic model of optimal dynamic measurements

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:2 (2018),  147–153
  24. The Cauchy problem for the Sobolev type equation of higher order

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018),  5–14
  25. Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  137–143
  26. Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order

    J. Comp. Eng. Math., 3:2 (2016),  57–67
  27. Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016),  5–16
  28. Inverse problem for Sobolev type equation of the second order

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016),  5–12
  29. Computational experiment for one class of evolution mathematical models in quasi-Sobolev spaces

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016),  141–147
  30. Numerical investigation of one Sobolev type mathematical model

    J. Comp. Eng. Math., 2:3 (2015),  72–80
  31. Boussinesq – Löve mathematical model on a geometrical graph

    J. Comp. Eng. Math., 2:2 (2015),  82–97
  32. On integration in quasi-Banach spaces of sequences

    J. Comp. Eng. Math., 2:1 (2015),  52–56
  33. Finding of a numerical solution to the Cauchy–Dirichlet problem for Boussinesq–Lòve equation using finite differences method

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128),  76–81
  34. Holomorphic degenerate operator semigroups and evolutionary Sobolev type equations in quasi-Sobolev spaces of sequences

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015),  27–36
  35. On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015),  113–119
  36. Computational experiment for one mathematical model of ion-acoustic waves

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015),  127–132
  37. On one Sobolev type mathematical model in quasi-Banach spaces

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:1 (2015),  137–142
  38. One nonclassical higher order mathematical model with additive "white noise"'

    J. Comp. Eng. Math., 1:1 (2014),  55–68
  39. The Higher-Order Sobolev-Type Models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014),  5–28
  40. Strongly continuous operator semigroups. Alternative approach

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013),  40–48
  41. The Sobolev-type equations of the second order with the relatively dissipative operator pencils

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(27) (2012),  26–33
  42. Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14,  73–82
  43. The Phase Space of the Modified Boussinesq Equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 12,  13–19
  44. The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11,  13–24
  45. The phase space of a high order Sobolev type equation

    Bulletin of Irkutsk State University. Series Mathematics, 4:4 (2011),  45–57
  46. The initial-finish value problem for nonhomogenious Boussinesque–Löve equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 10,  22–29
  47. The initial-finish value problem for the Boussinesque–Löve equation defined on graph

    Bulletin of Irkutsk State University. Series Mathematics, 3:2 (2010),  18–29
  48. The initial-finish value problem for the Boussinesq–Löve equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5,  23–31
  49. The phase spaces of a class of linear higher-order Sobolev type equations

    Differ. Uravn., 42:2 (2006),  252–260
  50. Достаточные условия полиномиальной ограниченности пучка операторов

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  66–73
  51. Регулярные пучки матриц

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  22–33
  52. Морфология фазовых пространств одного класса линейных уравнений типа Соболева высокого порядка

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5,  87–102

  53. Alexander Leonidovich Shestakov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  142–146
  54. Георгий Анатольевич Свиридюк (к юбилею)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127
  55. Evnin Alexander Yurevich (September 24, 1960 – November 19, 2020)

    J. Comp. Eng. Math., 8:1 (2021),  74–48
  56. Sergey Grigorievich Pyatkov (on 65th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021),  131–133
  57. To the 80th birthday anniversary of Arkady Gerenshtein

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:4 (2020),  70–72
  58. Prof. Hristo Kirilov Radev, DSc. (November 15, 1940 – June 09, 2020)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  122–123
  59. Nikolai Aleksandrovich Sidorov (on 80th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  119–121
  60. Tamara Gennadievna Sukacheva (on anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020),  151–153
  61. Jacek Banasiak (on 60th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  172–174
  62. Yu.I. Sapronov. To the memory of mathematician, teacher and friend

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  166–168
  63. To the 70th anniversary of professor Yu.E. Gliklikh

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  163–165
  64. Valentin Fedorovich Kuropatenko (1933–2017)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  151–152
  65. To the 65th anniversary of professor G. A. Sviridyuk

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  155–158
  66. Sergey Grigorievich Pyatkov (to the 60th anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016),  139–144


© Steklov Math. Inst. of RAS, 2026