|
|
Publications in Math-Net.Ru
-
Nonlinear analysis of beam on an elastic polymeric foundation: a study on transient and frequency responses
J. Comp. Eng. Math., 12:2 (2025), 51–62
-
Noise reduction in digital images based on original RAW files using neural networks
J. Comp. Eng. Math., 11:4 (2024), 64–74
-
Algorithm for numerical solution of the optimal control problem for one hydrodynamics model using the COBYLA method
J. Comp. Eng. Math., 11:4 (2024), 40–47
-
Investigation of the transient responses of a beam on an elastic polymeric foundation
Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024), 97–105
-
Optimal control of solutions to the Cauchy problem for an incomplete semilinear Sobolev type equation of the second order
J. Comp. Eng. Math., 10:3 (2023), 24–37
-
Parameters identification algorithm for the SUSUPLUME air pollution propagation model
Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:3 (2023), 74–82
-
Algorithm for numerical solution of the optimal control problem for the mathematical model of shallow water wave propagation
J. Comp. Eng. Math., 9:2 (2022), 73–80
-
Processing of information on recovery of the external force parameter for the mathematical model of ion-acoustic waves in plasma
J. Comp. Eng. Math., 9:1 (2022), 59–72
-
Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:3 (2022), 38–44
-
Development of the theory of optimal dynamic measurement
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022), 19–33
-
Semilinear Sobolev type mathematical models
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 43–59
-
Reconstruction of a dynamically distorted signal based on the theory of optimal dynamic measurements
Avtomat. i Telemekh., 2021, no. 12, 125–137
-
Numerical investigation of the inverse problem for the Boussinesq – Love mathematical model on a graph
J. Comp. Eng. Math., 8:3 (2021), 71–85
-
Numerical investigation of the inital-final problem for the Boussinesq – Love equation on a geometrical graph
J. Comp. Eng. Math., 8:1 (2021), 15–28
-
The optimal measurements theory as a new paradigm in the metrology
J. Comp. Eng. Math., 7:1 (2020), 3–23
-
Numerical study of the susuplume air pollution model
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 5–18
-
Optimal control in linear Sobolev type mathematical models
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020), 5–27
-
Numerical solution of optimal control problem for the model of linear waves in plasma
J. Comp. Eng. Math., 6:4 (2019), 69–78
-
Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:4 (2019), 26–31
-
Inverse problem for Sobolev type mathematical models
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 25–36
-
Optimal control of solutions to the Showalter–Sidorov problem in a model of linear waves in plasma
J. Comp. Eng. Math., 5:4 (2018), 46–57
-
Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise"
Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:3 (2018), 103–117
-
Stochastic model of optimal dynamic measurements
Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:2 (2018), 147–153
-
The Cauchy problem for the Sobolev type equation of higher order
Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018), 5–14
-
Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 137–143
-
Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order
J. Comp. Eng. Math., 3:2 (2016), 57–67
-
Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016), 5–16
-
Inverse problem for Sobolev type equation of the second order
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 5–12
-
Computational experiment for one class of evolution mathematical models in quasi-Sobolev spaces
Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016), 141–147
-
Numerical investigation of one Sobolev type mathematical model
J. Comp. Eng. Math., 2:3 (2015), 72–80
-
Boussinesq – Löve mathematical model on a geometrical graph
J. Comp. Eng. Math., 2:2 (2015), 82–97
-
On integration in quasi-Banach spaces of sequences
J. Comp. Eng. Math., 2:1 (2015), 52–56
-
Finding of a numerical solution to the Cauchy–Dirichlet problem for Boussinesq–Lòve equation using finite differences method
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128), 76–81
-
Holomorphic degenerate operator semigroups and evolutionary Sobolev type equations in quasi-Sobolev spaces of sequences
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 27–36
-
On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 113–119
-
Computational experiment for one mathematical model of ion-acoustic waves
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 127–132
-
On one Sobolev type mathematical model in quasi-Banach spaces
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:1 (2015), 137–142
-
One nonclassical higher order mathematical model with additive "white noise"'
J. Comp. Eng. Math., 1:1 (2014), 55–68
-
The Higher-Order Sobolev-Type Models
Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014), 5–28
-
Strongly continuous operator semigroups. Alternative approach
Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013), 40–48
-
The Sobolev-type equations of the second order with the relatively dissipative operator pencils
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(27) (2012), 26–33
-
Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14, 73–82
-
The Phase Space of the Modified Boussinesq Equation
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 12, 13–19
-
The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11, 13–24
-
The phase space of a high order Sobolev type equation
Bulletin of Irkutsk State University. Series Mathematics, 4:4 (2011), 45–57
-
The initial-finish value problem for nonhomogenious Boussinesque–Löve equation
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 10, 22–29
-
The initial-finish value problem for the Boussinesque–Löve equation defined on graph
Bulletin of Irkutsk State University. Series Mathematics, 3:2 (2010), 18–29
-
The initial-finish value problem for the Boussinesq–Löve equation
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5, 23–31
-
The phase spaces of a class of linear higher-order Sobolev type equations
Differ. Uravn., 42:2 (2006), 252–260
-
Достаточные условия полиномиальной ограниченности пучка операторов
Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7, 66–73
-
Регулярные пучки матриц
Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7, 22–33
-
Морфология фазовых пространств
одного класса линейных уравнений типа Соболева высокого порядка
Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5, 87–102
-
Alexander Leonidovich Shestakov (to Anniversary Since Birth)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022), 142–146
-
Георгий Анатольевич Свиридюк
(к юбилею)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 123–127
-
Evnin Alexander Yurevich (September 24, 1960 – November 19, 2020)
J. Comp. Eng. Math., 8:1 (2021), 74–48
-
Sergey Grigorievich Pyatkov
(on 65th birthday)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021), 131–133
-
To the 80th birthday anniversary of Arkady Gerenshtein
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:4 (2020), 70–72
-
Prof. Hristo Kirilov Radev, DSc. (November 15, 1940 – June 09, 2020)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 122–123
-
Nikolai Aleksandrovich Sidorov (on 80th birthday)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 119–121
-
Tamara Gennadievna Sukacheva (on anniversary)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020), 151–153
-
Jacek Banasiak (on 60th birthday)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 172–174
-
Yu.I. Sapronov. To the memory of mathematician, teacher and friend
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 166–168
-
To the 70th anniversary of professor Yu.E. Gliklikh
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 163–165
-
Valentin Fedorovich Kuropatenko (1933–2017)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017), 151–152
-
To the 65th anniversary of professor G. A. Sviridyuk
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 155–158
-
Sergey Grigorievich Pyatkov (to the 60th anniversary)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016), 139–144
© , 2026