RUS  ENG
Full version
PEOPLE

Kalantarov Varga K

Publications in Math-Net.Ru

  1. Attractor of the limit Navier–Stokes–Voigt system in $\mathbb{R}^4$

    Mat. Zametki, 119:2 (2026),  220–227
  2. Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations

    Mat. Zametki, 112:3 (2022),  391–397
  3. Counterexamples to regularity of Mañé projections in the theory of attractors

    Uspekhi Mat. Nauk, 68:2(410) (2013),  3–32
  4. On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations

    Zap. Nauchn. Sem. POMI, 318 (2004),  120–134
  5. Determining functionals for nonlinear damped wave equations

    Mat. Fiz. Anal. Geom., 8:2 (2001),  215–227
  6. On the minimal global attractor for the phase field equations

    Zap. Nauchn. Sem. LOMI, 188 (1991),  70–86
  7. On the global behaviour of solutions of some fourth order nonlinear equations

    Zap. Nauchn. Sem. LOMI, 163 (1987),  66–75
  8. On the attractors for certain nonlinear problems of mathematical physics

    Zap. Nauchn. Sem. LOMI, 152 (1986),  50–54
  9. On the collapses of the solutions of parabolic and hyperbolic equations, possessing nonlinearities in the boundary conditions

    Zap. Nauchn. Sem. LOMI, 127 (1983),  75–83
  10. Theorems of Phragmen–Lindelöf type for two non-linear problems of mecanics

    Zap. Nauchn. Sem. LOMI, 110 (1981),  53–56
  11. On finding of solutions of the first boundary value problem for the Karman system of equations with unbounded Dirichlet integral

    Zap. Nauchn. Sem. LOMI, 96 (1980),  97–100
  12. Stabilization of the solutions of a certain class of quasilinear parabolic equations as $t\to\infty$

    Sibirsk. Mat. Zh., 19:5 (1978),  1043–1052
  13. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types

    Zap. Nauchn. Sem. LOMI, 69 (1977),  77–102


© Steklov Math. Inst. of RAS, 2026