|
|
Publications in Math-Net.Ru
-
Attractor of the limit Navier–Stokes–Voigt system in $\mathbb{R}^4$
Mat. Zametki, 119:2 (2026), 220–227
-
Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations
Mat. Zametki, 112:3 (2022), 391–397
-
Counterexamples to regularity of Mañé projections in the theory of attractors
Uspekhi Mat. Nauk, 68:2(410) (2013), 3–32
-
On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations
Zap. Nauchn. Sem. POMI, 318 (2004), 120–134
-
Determining functionals for nonlinear damped wave equations
Mat. Fiz. Anal. Geom., 8:2 (2001), 215–227
-
On the minimal global attractor for the phase field equations
Zap. Nauchn. Sem. LOMI, 188 (1991), 70–86
-
On the global behaviour of solutions of some fourth order nonlinear equations
Zap. Nauchn. Sem. LOMI, 163 (1987), 66–75
-
On the attractors for certain nonlinear problems of mathematical physics
Zap. Nauchn. Sem. LOMI, 152 (1986), 50–54
-
On the collapses of the solutions of parabolic and hyperbolic equations, possessing nonlinearities in the boundary conditions
Zap. Nauchn. Sem. LOMI, 127 (1983), 75–83
-
Theorems of Phragmen–Lindelöf type for two non-linear problems of mecanics
Zap. Nauchn. Sem. LOMI, 110 (1981), 53–56
-
On finding of solutions of the first boundary value problem for the Karman system of equations with unbounded Dirichlet integral
Zap. Nauchn. Sem. LOMI, 96 (1980), 97–100
-
Stabilization of the solutions of a certain class of quasilinear parabolic equations as $t\to\infty$
Sibirsk. Mat. Zh., 19:5 (1978), 1043–1052
-
The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types
Zap. Nauchn. Sem. LOMI, 69 (1977), 77–102
© , 2026