RUS  ENG
Full version
PEOPLE

Shafiev Ramiz Aliovsadovich

Publications in Math-Net.Ru

  1. About a regularized method for solving a constrained pseudoinverse problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  76–83
  2. On continuous regularization method for a constrained pseudoinverse problem with additional restrictions on input operators

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:1 (2016),  106–116
  3. Solution of a $2$-constrained pseudo-inversion problem by a relaxation method

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  217–225
  4. An iterative regularization method for the 2-constrained pseudoinversion of an operator equation

    Zh. Vychisl. Mat. Mat. Fiz., 46:10 (2006),  1735–1743
  5. Regularization methods for the constrained pseudoinversion problem with inaccurate date

    Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  347–353
  6. On the choice of parameters in the method of regularization of $L$-pseudo-inversion

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 11,  71–76
  7. Regularization methods for a multistage optimization problem

    Dokl. Akad. Nauk, 331:5 (1993),  563–566
  8. On the theory of Tikhonov-Lavrent'ev regularization methods

    Dokl. Akad. Nauk SSSR, 282:4 (1985),  804–808
  9. Regular methods of calculation of $L$-pseudoinverse operators

    Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983),  536–544
  10. The method of chords

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 7,  107–112
  11. Some iteration methods of solving non-linear equations with non-differentiable operators

    Zh. Vychisl. Mat. Mat. Fiz., 7:2 (1967),  425–429
  12. Certain iteration processes

    Zh. Vychisl. Mat. Mat. Fiz., 4:1 (1964),  139–143
  13. On the method of tangent hyperbolas

    Dokl. Akad. Nauk SSSR, 149:4 (1963),  788–791
  14. On a modification of Chebyshev's method

    Zh. Vychisl. Mat. Mat. Fiz., 3:5 (1963),  950–953


© Steklov Math. Inst. of RAS, 2026