RUS  ENG
Full version
PEOPLE

Nazarov Anatolii Andreevich

Publications in Math-Net.Ru

  1. Asymptotic-diffusion analysis of the retrial queueing system $M^{(2)}|M^{(2)}|1$ with priority customers for a non-priority component

    Avtomat. i Telemekh., 2025, no. 5,  3–21
  2. Method of the marginal asymptotic-diffusion analysis for multiclass retrial queue $M_n/GI_n/1$

    Avtomat. i Telemekh., 2025, no. 3,  60–78
  3. Asymptotic-diffusion analysis of an infinite-linear queuing system with negative calls and a recovery unit for distorted positive ones

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:3 (2025),  395–407
  4. Study of two-dimensional marked MMPP under the high rate limit condition

    UBS, 112 (2024),  45–63
  5. Asymptotic analysis of the $M^{[N]}/GI/1$ system with the remaining service time

    UBS, 108 (2024),  22–39
  6. Asymptotic diffusion analysis of $MMP P |M|N$ queuing systems with feedback

    Avtomat. i Telemekh., 2022, no. 7,  33–48
  7. Scalar-vector recurrent algorithm for stationary probabilities in a heterogeneous system $\mathrm{M}/(\mathrm{M}_1, \mathrm{M}_2)/(\mathrm{N}_1,\mathrm{N}_2)/\infty/\mathrm{FIFO}$

    UBS, 98 (2022),  5–21
  8. Heavy outgoing call asymptotics for $\mathrm{MMPP|M|1}$ retrial queue with two way communication and multiple types of outgoing calls

    Izv. Saratov Univ. Math. Mech. Inform., 21:1 (2021),  111–124
  9. Output process of the $\mathrm{M|GI|1}$ is an asymptotical renewal process

    Izv. Saratov Univ. Math. Mech. Inform., 21:1 (2021),  100–110
  10. Asymptotic analysis of the MMÐÐ|M|1 retrial queue with negative calls under the heavy load condition

    Izv. Saratov Univ. Math. Mech. Inform., 20:4 (2020),  534–547
  11. Research of a retrial queueing system with exclusion of customers and three-phase phased by follow-up

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020),  331–342
  12. A study of additionally generated flows in systems with unlimited number of devices and recurrent servicing with the Markov summation method

    Avtomat. i Telemekh., 2019, no. 12,  133–145
  13. The $MMAP/M/R/0$ queueing system with reservation of servers operating in a random environment

    Probl. Peredachi Inf., 51:3 (2015),  93–104
  14. The non-Markov dynamic RQ system with the incoming MMP flow of requests

    Avtomat. i Telemekh., 2013, no. 7,  89–101
  15. Analysis of an open non-Markovian $GI-(GI\mid\infty)^K$ queueing network with high-rate renewal arrival process

    Probl. Peredachi Inf., 49:2 (2013),  78–91
  16. An asymptotic property of output streams in queueing systems with unbounded number of servers and a Markov arrival process

    Avtomat. i Telemekh., 2012, no. 5,  57–70
  17. Method of asymptotic semiinvariants for studying a mathematical model of a random access network

    Probl. Peredachi Inf., 46:1 (2010),  94–111
  18. Probabilistic-time characteristics of bistable random access networks

    Avtomat. i Telemekh., 2006, no. 2,  90–105
  19. Unstable random access networks under a static conflict warning protocol

    Avtomat. i Telemekh., 2004, no. 8,  72–84
  20. Analysis of a Communication Network Governed by an Adaptive Random Multiple Access Protocol under Critical Load

    Probl. Peredachi Inf., 40:3 (2004),  69–80
  21. Local Diffusion Approximation of the State Changing Process of an Unstable Random Access Network in a Neighborhood of the Asymptotic Mean

    Probl. Peredachi Inf., 40:1 (2004),  85–97
  22. Analysis of Asymptotic Average Characteristics for Non-Markovian Models of Unstable Random Access

    Probl. Peredachi Inf., 39:3 (2003),  77–86
  23. Discrete-Time Queueing Systems and Their Application to Analysis of Optical-Fiber Communication Networks

    Avtomat. i Telemekh., 2002, no. 12,  59–70
  24. Non-Markovian Models of Communication Networks with Adaptive Random Multiple Access Protocols

    Avtomat. i Telemekh., 2001, no. 5,  124–146
  25. Ergodicity of Band Graph Markov Chains and Their Application to Problems of the Analysis of Existence of a Stationary Regime in a Dynamic Random Multiple Access Communication Network

    Probl. Peredachi Inf., 37:2 (2001),  88–95
  26. Analysis of a Communication Network with the Adaptive ALOHA Protocol for a Finite Number of Stations under Overload

    Probl. Peredachi Inf., 36:3 (2000),  83–93
  27. Study of Controlled Asynchronous Multiple Access in Satellite Communication Networks with Conflict Warning

    Probl. Peredachi Inf., 36:1 (2000),  77–89
  28. Communication networks with a finite number of nodes controlled by adaptive random multiple-access protocols under overloads

    Avtomat. i Telemekh., 1999, no. 12,  99–113
  29. Engset Formulas for Nonhomogeneous Non-Markov Queueing Systems and Their Application in Communication Networks

    Probl. Peredachi Inf., 34:2 (1998),  109–116
  30. On the Adaptive Buffer Memory Allocation at a Gateway

    Avtomat. i Telemekh., 1997, no. 9,  176–184
  31. Multiplicativity of a Stationary State Distribution in Multi-Channel Non-Markovian Queuing System with Non-Uniform Input Flow

    Avtomat. i Telemekh., 1997, no. 4,  113–120
  32. Stable Operation of a Nonstable Communication Network with a Protocol of Random Multiple Access

    Probl. Peredachi Inf., 33:2 (1997),  101–111
  33. Investigation of Bistability of a Network Having the ALOHA Protocol for Finite Number of Stations

    Avtomat. i Telemekh., 1996, no. 9,  91–100
  34. Study and Optimization of Controllable Adaptive Terminal Measuring System

    Avtomat. i Telemekh., 1996, no. 4,  96–100
  35. Equivalence criterion for the global and detailed balance equations of Markov chains

    Avtomat. i Telemekh., 1995, no. 12,  71–78
  36. Investigation of the bistability phenomenon in satellite communication networks

    Avtomat. i Telemekh., 1994, no. 10,  117–124
  37. Analysis of the mathematical model of an adaptive terminal measurement system

    Avtomat. i Telemekh., 1993, no. 11,  108–119
  38. Analysis and optimization of a heavy duty service system where priorities vary with the entry number

    Avtomat. i Telemekh., 1984, no. 10,  78–87
  39. Adaptive connection of a reserve serverfby an automaton with purposeful behaviour

    Avtomat. i Telemekh., 1981, no. 3,  170–174
  40. On adaptive queueing systems controlled by automata of linear tactics

    Avtomat. i Telemekh., 1979, no. 5,  99–103
  41. Asymptotically optimal formation of queues in multi-channel service systems with large loads

    Avtomat. i Telemekh., 1977, no. 9,  53–57
  42. Optimum Queue Formation in Multichannel Queueing Systems with Indirect Observations

    Probl. Peredachi Inf., 13:1 (1977),  104–108
  43. Adaptation in controlled bulk service systems

    Avtomat. i Telemekh., 1976, no. 7,  76–79
  44. Optimal formation of queues in a multichannel queueing system

    Avtomat. i Telemekh., 1975, no. 8,  36–39


© Steklov Math. Inst. of RAS, 2026