|
|
Publications in Math-Net.Ru
-
A reconstruction of analytic functions on the unit disk of $\mathbb{C}$
Vladikavkaz. Mat. Zh., 19:1 (2017), 3–10
-
Inverting of generalized Riemann–Liouville operator by means of integral Laplace transform
Ufimsk. Mat. Zh., 8:3 (2016), 41–48
-
Statistic structure generated by randomize density
Chebyshevskii Sb., 16:4 (2015), 28–40
-
Inverse problems in integral formulas
Chebyshevskii Sb., 16:3 (2015), 70–77
-
Transformation Operators and Boundary Value Problems
Differ. Uravn., 40:8 (2004), 1085–1095
-
Univalent functions with weight
Dokl. Akad. Nauk, 349:6 (1996), 727–728
-
On ballistic functions
Dokl. Akad. Nauk, 336:5 (1994), 581–583
-
On the strong and weak ballistic property of functions
Dokl. Akad. Nauk, 329:2 (1993), 122–124
-
Ballistic characteristic of continuous functions
Dokl. Akad. Nauk, 323:2 (1992), 199–201
-
Integro-differential operators for harmonic functions in convex domains and their applications
Differ. Uravn., 24:9 (1988), 1629–1631
-
Integral representations in Temlyakov–Weil domains
Dokl. Akad. Nauk SSSR, 289:6 (1986), 1293–1297
-
Operators for harmonic functions and their applications
Differ. Uravn., 21:1 (1985), 9–15
-
The Schur and Carathéodory classes of functions in the case of several complex variables, and extremal questions in these classes
Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 9, 6–12
-
Integral representations in the class of bounded multiply circular domains
Dokl. Akad. Nauk SSSR, 231:4 (1976), 781–783
-
Classes of harmonic and analytic functions associated with the operator $J_a^{(l)}$ and their structural representation
Dokl. Akad. Nauk SSSR, 227:3 (1976), 521–523
-
Integro-differential operators and the generalized integral formulas of Cauchy, Schwarz and Poisson
Dokl. Akad. Nauk SSSR, 225:3 (1975), 489–490
-
Parametric assignment of domains of type $(T_1)$ and Temljakov's integral formula
Dokl. Akad. Nauk SSSR, 223:2 (1975), 265–268
-
General integral representations for holomorphic functions of several complex variables with $n$-dimensional defining manifolds in $C^n$
Dokl. Akad. Nauk SSSR, 223:1 (1975), 13–15
-
General integral representations of Temljakov, Schwarz–Temljakov and Poisson–Temljakov with $n$-dimensional defining manifold in the space $C^n$
Dokl. Akad. Nauk SSSR, 221:3 (1975), 513–515
-
The trigonometric moment problem associated with a system of functions $\omega_j(x)\in\Omega$, $j=1\dots,m$
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 8, 94–96
-
Temljakov's integral formula with $n$-dimensional defining manifold in the space $C^n$
Dokl. Akad. Nauk SSSR, 219:3 (1974), 521–523
-
Temljakov integral representations with two-dimensional defining manifold in the space $C^2$
Dokl. Akad. Nauk SSSR, 217:1 (1974), 11–13
-
Operators in convex domains and integral representations
Dokl. Akad. Nauk SSSR, 215:4 (1974), 769–771
-
Classes of functions associated with a system of functions $\omega_j(x)\in\Omega$, $j=1,\dots,m$, and their structural representation
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 10, 3–10
-
Some classes of harmonic and analytic functions and their structural representation
Dokl. Akad. Nauk SSSR, 211:6 (1973), 1261–1262
-
Generalized integral representations for functions holomorphic in a polycylinder
Dokl. Akad. Nauk SSSR, 208:1 (1973), 14–17
-
On the generalized Cauchy, Schwarz and Poisson integral formulas
Dokl. Akad. Nauk SSSR, 204:4 (1972), 775–777
-
A generalization of the Cauchy, Schwarz and Poisson integral formulas
Dokl. Akad. Nauk SSSR, 202:1 (1972), 12–15
-
On generalization of Cauchy, Schwarz and Poisson integral formulas
Dokl. Akad. Nauk SSSR, 198:5 (1971), 999–1000
-
Generalized integral representations in the case of convex polydisc domains
Dokl. Akad. Nauk SSSR, 197:1 (1971), 12–13
-
Generalized integral representations in the case of a polycylinder
Dokl. Akad. Nauk SSSR, 196:1 (1971), 9–11
-
On the question of generalizing the Cauchy, Schwarz and Poisson integral formulas
Dokl. Akad. Nauk SSSR, 194:2 (1970), 250–252
-
A structural representation of certain classes of harmonic and analytic functions
Dokl. Akad. Nauk SSSR, 193:4 (1970), 746–747
-
On generalizing the Cauchy, Schwarz and Poisson integral formulas
Dokl. Akad. Nauk SSSR, 187:3 (1969), 494–495
-
Integral representations of holomorphic functions, and Taylor's formula
Dokl. Akad. Nauk SSSR, 187:2 (1969), 239–240
-
General integral representations
Dokl. Akad. Nauk SSSR, 186:2 (1969), 247–250
-
General integral representations of holomorphic functions of several complex variables
Dokl. Akad. Nauk SSSR, 181:2 (1968), 263–266
-
On the theory of integral representations of holomorphic functions
Dokl. Akad. Nauk SSSR, 180:1 (1968), 12–14
-
Integral representations for functions holomorphic in convex multicircular regions, and Taylor's formula
Dokl. Akad. Nauk SSSR, 176:6 (1967), 1217–1220
-
Classes of regular functions of several complex variables
Dokl. Akad. Nauk SSSR, 174:6 (1967), 1247–1250
-
General integral representations of holomorphic functions
Dokl. Akad. Nauk SSSR, 172:6 (1967), 1251–1253
-
Integral representation of holomorphic functions of several complex variables
Dokl. Akad. Nauk SSSR, 169:3 (1966), 495–498
-
Certain classes of regular functions of several complex variables
Dokl. Akad. Nauk SSSR, 163:6 (1965), 1303–1306
-
Estimates in the theory of regular functions of many complex variables
Dokl. Akad. Nauk SSSR, 163:4 (1965), 791–794
-
Some estimates for the coefficients of bounded holomorphic functions
Dokl. Akad. Nauk SSSR, 161:3 (1965), 503–506
-
Criteria for regular functions to belong to two classes of functions of two complex variables
Dokl. Akad. Nauk SSSR, 152:2 (1963), 255–258
-
Estimates in the theory of regular functions of two complex variables
Dokl. Akad. Nauk SSSR, 151:5 (1963), 1003–1006
-
Strengthening the bounds for certain classes of regular functions of two complex variables
Mat. Sb. (N.S.), 61(103):3 (1963), 319–333
-
Uniqueness of extremal functions in the bounds for Taylor coefficients of bounded functions of two complex variables
Dokl. Akad. Nauk SSSR, 145:6 (1962), 1195–1198
-
On certain classes of analytic functions of two complex variables
Dokl. Akad. Nauk SSSR, 143:5 (1962), 1011–1013
-
On the coefficients of a certain class of analytic functions of two complex variables
Dokl. Akad. Nauk SSSR, 137:3 (1961), 495–498
-
Estimates of Taylor's coefficients for functions of more than two complex variables
Dokl. Akad. Nauk SSSR, 131:6 (1960), 1231–1233
© , 2026